期刊文献+

一种基于Logistic模型的人工鱼群算法 被引量:8

Improved artificial fish swarm algorithm based on logistic model
下载PDF
导出
摘要 为了克服人工鱼群算法容易陷入局部最优以及求解精度较低的弱点,提出了一种基于logistic模型的自适应人工鱼群算法。算法运行过程中,步长和视野两个参数自适应调整,在算法的早期保持种群多样性,并具有较高的收敛速度;在算法后期加强局部搜索能力,算法具有较高的求解精度。通过在5个经典Benchmark函数上的实验及相关的聚类实验,表明该算法具有较好的收敛速度和求解精度。 To overcome the weakness of the artificial fish swarm algorithm (AFSA), AFSA is more likely to plunge into local op timum and has lower precision, an improved AFSA based Logistic mode[ is proposed. The algorithm can automatically adiust the visual and step during the running time. Therefore, it can keep the individuals diversity and has faster convergence speed at the initial generations. However, the algorithm has stronger searching ability of local optimum and has higher precision of result at a later time. Some experiments on five classical Benchmark functions and some pertinent clusters show that this improved AFSA al- gorithm can be convergent to global optimization with faster convergence speed and higher precision.
出处 《中国科技论文》 CAS 北大核心 2013年第7期668-671,共4页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20110023110002)
关键词 人工鱼群算法 LOGISTIC模型 步长 视野 自适应 AFSA logistic model step visual self-adap6on
  • 相关文献

参考文献15

  • 1Tang Kezong, Yuan Xiaojing, Sun Tingkai, et al. An improved scheme for minimum cross entropy threshold seleetion based on genetic algorithm [J]. Knowl-based Syst, 2011, 24(8):1131-1138.
  • 2Kamal H, Moussa D, Patrick S. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation [J]. Comp Vision Image Un- derstand, 2008, 109(2): 163-175.
  • 3Liu Fei, Zeng Guangzhou. Study of genetic algorithm with reinforcement learning to solve TSP [J]. Expert Syst Appl, 2009, 36(3): 6995-7001.
  • 4Abdelkader R F. An improved discrete PSO with GA operators for efficient QoS-multicast routing [J]. Int J Hybrid Inform Teeh, 2011, 4(2) : 23-38.
  • 5Helwig S, Neumann F, Wanka R. Particle swarm opti- mization with velocity adaptation [C]// International Conference on Adaptive and Intelligent Systems. Klag- enfurt, 2009 : 146-151.
  • 6Dervis K, Bahriye A. A comparative study of artificial bee colony algorithm [J]. Appl Math Comput, 2009, 214(1) : 108-132.
  • 7高卫峰,刘三阳,姜飞,张建科.混合人工蜂群算法[J].系统工程与电子技术,2011,33(5):1167-1170. 被引量:32
  • 8邓涛,姚宏,杜军.多峰函数优化的改进人工鱼群混合算法[J].计算机应用,2012,32(10):2904-2906. 被引量:12
  • 9杜晓昕,王波,戴学丰.函数依赖判定可行域的人工鱼群属性约简[J].计算机工程与应用,2012,48(9):131-133. 被引量:1
  • 10Yong Peng. An improved artificial fish swarm algo- rithm for optimal operation of cascade reservoirs [J]. J Comp, 2011, 6(4): 740-746.

二级参考文献83

共引文献100

同被引文献70

  • 1江铭炎,袁东风.人工鱼群算法及其应用[M].北京:科学出版社,2012.
  • 2郭文忠,陈国龙.离散粒子群优化算法及其应用[M].北京:清华大学出版社,2012.
  • 3Peng Yong. An improved artificial fish swarm algorithm for optimal operation of cascade reservoirs [ J ]. Journal of Computers, 2011,6 (4) :740-746.
  • 4Sivananaithaperumal S, Amall S M J, Baskar S, et al. Constrained self-adaptive differential evolution based desgin of robust optimal fixed structure controller[ J]. Engineering Applications of Artificial Intel- ligence,2011,24 (6) : 1084-1093.
  • 5Abdelkader R F. An improved discrete PSO with GA operators for ef- ficient QoS-multicast routing[J]. International Journal of Hybrid Information Technology, 2011,4(2) :23-38.
  • 6Zhang Jingqiao, Sanderson A C. JADE:adaptive differential evolution with optional external archive [ J]. IEEE Trans on Evolutionary Computation,2009,13 ( 5 ) :945- 958.
  • 7Tizhoosh H R. Opposition-based learning:a new scheme for machine intelligence [ C ]//Proc of IEEE Computational Intelligence for Model- ling,Cantml and Automation. 2005:695-701.
  • 8A1-Qunaieer F S, Tizhoosh H R, Rahnamayan S. Opposition based computing a survey [ C ]//Proc of International Joint Conference on Neural Networks, Barcelona: [ s. n. ] ,2010 : 1 - 7.
  • 9Peng Yong. An improved artificial fish swarm algorithmfor optimal operation of cascade reservoirs[J]. Journal ofComputers ,2011,6(4) : 740-746.
  • 10Rahnamayan S,Tizhoosh H R,Salama M M A Opposi-tion-based differential evolution[J]. IEEE Transactions onEvlutionary computation,2008,12(1) : 64-79.

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部