摘要
文章阐述了模糊C-均值聚类算法(FCM)原理及存在的缺点,通过将粒子群优化算法思想应用到模糊聚类算法中,对模糊聚类算法进行了优化设计.实验证明,改进的算法具有较好的全局最优解,克服了传统模糊C聚类算法的不足,聚类效果优于单一使用FCM算法.
This article presents fuzzy C-means clustering algorithm(FCM) and its shortcomings,applies the technology of particle swarm optimization(PSO) to the fuzzy clustering algorithm,optimizes the design of fuzzy clustering algorithm.The experimental results show that the algorithm has better global optimal solution,which overcomes the shortcomings of traditional fuzzy C-means clustering algorithm.Clustering results are obviously better than single use of FCM algorithm.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2013年第4期451-454,共4页
Journal of Henan University:Natural Science
基金
河南省教育厅科学技术研究重点项目(13A520016)