期刊文献+

基于LBP纹理和改进Camshift算子的车辆检测与跟踪 被引量:20

Vehicle Detection and Tracking Based on the Local Binary Pattern Texture and Improved Camshift Operator
下载PDF
导出
摘要 提出了利用背景图像LBP(局部二值模式)纹理和当前帧图像LBP纹理的相似度分析提取前景的方法,克服了车辆检测中常用的帧差法、背景差分法对光照比较敏感的缺点.同时基于H,S,V分量及改进的LBP纹理的联合直方图与金字塔L-K光流法中心跟踪相结合的Camshift跟踪算法,有效地解决了背景目标颜色相近可能会导致跟踪的目标区域加入背景后变大、处理较大帧间位移的视频跟踪上搜索窗口的位置准确度较低的问题.实验证明,该方法具有良好的检测和追踪效果. A method of extraction prospect,which uses the background image LBP(local binary pattern)texture and current frame image LBP texture similarity analysis,was put forward.This method overcomes the sensitivity to illumination methods in vehicle detection,such as frame difference method and background difference method.The Camshift tracking algorithm combines the H,S and V components,the improved LBP texture of the joint histogram with the centroid tracking by pyramid L-K optical flow.This method can effectively solve two problems:one that the similar background color may lead to the tracking of the target area bigger,and the other that the search window position accuracy is low when dealing with large displacement between frames of video.The experimental results prove that the method has good detection and tracking effect.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期52-57,共6页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(51175159) 中国博士后基金资助项目(20110490263) 汽车车身先进设计制造国家重点实验室自主课题团队重点项目(61075004)
关键词 车辆检测 车辆跟踪 LBP纹理 CAMSHIFT算法 L-K光流法 vehicle detection vehicle tracking local binary pattern texture Camshift operator L-K optical flow method
  • 相关文献

参考文献12

  • 1孙欢,尚绪凤,朱赵龙,张贺泉.交通监控系统中帧差法与背景差分法优劣分析[J].电子科技,2012,25(10):1-3. 被引量:9
  • 2CHEN Y Z.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis Machine Intelligence,1995,17 (8):790-799.
  • 3COMANICU D,MEER P.Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (5):603-619.
  • 4吴慧敏,郑晓势.改进的高效Camshift跟踪算法[J].计算机工程与应用,2009,45(27):178-180. 被引量:24
  • 5HONG Lian-jin,QING Shan-liu,HAN Qing-lu,et al.Face detection using improved LBP under Bayesian framework[C] // Proceedings of the 3rd International Conference on Image and Graphics.New York:IEEE,2004:306-309.
  • 6NIBLACK W.An introduction to digital image processing[M].New Jersey:Prentice Hall,1986:115-116.
  • 7YU Wang,XUE Ye-wei,SHUO Xiao.LBP texture analysis based on the local adaptive Niblack algorithm[C] //Congress on Image and Signal Processing.New York:IEEE,2008:777-780.
  • 8OJALA T,VALKEALAHTI K,OJA E,etal.Texture discrimination with multi-dimensional distributions of signed gray level differences[J].Pattern Recognition,2001,34(3):727-739.
  • 9OJALA T,PIETIKAINEN M,MAENPAA T,etal.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (7):971-987.
  • 10NING Ji-feng,ZHANG Lei,ZHANG David,etal.Robust object tracking using joint color-texture histogram[J].International Journal of Pattern Recognition and Artificial Intelligence,2009,23(7):1245-1263.

二级参考文献18

  • 1蔡涛,李德华,朱洲,吴险峰,石永辉.基于彩色图像序列的特征检测和跟踪[J].计算机工程,2005,31(8):12-13. 被引量:5
  • 2陈乐,吕文阁,丁少华.角点检测技术研究进展[J].自动化技术与应用,2005,24(5):1-4. 被引量:45
  • 3邢军.基于Sobel算子数字图像的边缘检测[J].微机发展,2005,15(9):48-49. 被引量:57
  • 4张永丽,张太镒,毕建民.基于自适应背景初始化的车流量检测算法[J].微电子学与计算机,2007,24(5):138-140. 被引量:10
  • 5Collins R T,Lipton A J.Introduction to the special section on video surveillance[J].IEEE Trans on Pattern Anaysis and Machine Intelligence, 2000,22( 8 ) : 745-746.
  • 6Hu Weiming,Xiao Xuejuan,Tan Tieniu.Traffic accident prediction using vehicle tracking and trajectory analysis[J].Intelligent Trans portation System, 2003,11 : 220-225.
  • 7Boyle M.The effects of capture conditions on the CAMSHIFT face tracker[R].Alberta,Canada:Department of Computer Science,University of Calgary,2001.
  • 8Murat T.Digital video processing[M].[S.l.] : Prentice Hall, Inc, 1996: 94-95.
  • 9Collins,Lipton,Kanade,et al.A system for video surveillance and monitoring:VSAM final report,Technical Report CMU2RI2TR200212[R]. Robotics Institute Canaegie Mellon University,2000.
  • 10贾云得.机器视觉[M].北京:科学出版社,2004

共引文献65

同被引文献135

引证文献20

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部