摘要
以Donnell经典壳体振动微分方程为基础,研究微分求积单元法(DQEM)在圆柱壳稳态谐响应计算中的应用。研究结果表明:微分求积单元法可较为方便的处理多种边界条件;与有限元法相比,微分求积单元法直接面向问题的微分方程,可用较少的节点获得较高的计算精度,计算效率较高。该结果可为微分求积单元法在结构动力响应问题求解中的应用提供参考。
Based on Donnell’s classical shell theory,DQEM used to slove steady-state harmonic response of a cylindrical shell was studied.The results showed that DQEM is convenient to calculate the response with different boundary conditions;DQEM is comoared with FEM,the former is oriented directly to the differential equations of a problem and can obtain higher calculation precision with less node number,the computational efficiency is higher.The results here could provide a reference for application of DQEM in solving structural dynamic response.
出处
《振动与冲击》
EI
CSCD
北大核心
2013年第16期158-163,175,共7页
Journal of Vibration and Shock
基金
国家自然科学基金重点项目(50939002)