期刊文献+

基于最小混乱度的三值可逆逻辑综合算法

Ternary Reversible Logic Synthesis Algorithm with Minimum Chaos Degree
下载PDF
导出
摘要 三值可逆逻辑综合是可逆逻辑综合的延伸和扩展.为了简化可逆网络,提高三值可逆逻辑门的通用性,对现有三值可逆控制门控制位的生效值扩展为0、1和2.在此基础上提出了基于最小混乱度原则的三值可逆逻辑综合算法.该算法根据三值可逆函数计算其对应真值表中每个变量的相对混乱度和绝对混乱度,以最小混乱度原则选取三值可逆逻辑门,直至真值表中的每个变量的混乱度为零,得到三值可逆网络.该算法的时间复杂度为O(n2×3n),空间复杂度为O(n×3n).实验结果表明,与现有已知算法对比,平均门数更少. Ternary reversible logic synthesis is the extension and expansion of reversible logic synthesis.In order to simplify the reversible network and improve the generality of ternary reversible logic gate,the effective value of controlling bits of the existing ternary reversible controlled gates can be extended to any of 0,1 and 2.And on the basis of that,a ternary reversible logic synthesis algorithm with minimum chaos degree is proposed.The algorithm is used to compute the relative chaos degree and absolute chaos degree of each variable in truth table under ternary logic system,according to the reversible function.As one reversible logic gate is selected,the principle of minimal chaos degree in ternary reversible logic synthesis should be followed until the relative chaos degree and absolute chaos degree of each variable in truth table decrease to 0,which means the synthesis has been finished,and the reversible network can be derived.The time complexity for the algorithm is O(n2×3n),and its space complexity is O(n×3n).The experimental results show that the average number of gates is less than the existing algorithms as known.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第7期1352-1357,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60873069)
关键词 三值可逆逻辑门 三值可逆逻辑综合 混乱度 ternary reversible logic gate ternary reversible logic synthesis chaos degree
  • 相关文献

参考文献18

  • 1Nielsen M, Chuang I. Quantum Computation and Qantum Infor- mation [ M ]. Cambridge, UK: Cambridge University Press, 2000.
  • 2Peres A. Reversible logic and quantum computers[J]. Physical Review A32,1985 : 3266 - 3276.
  • 3Adleman L M. Molecular computation of solutions to combina- torial problems[ J]. Science, 1994,266( 11 ) : 1021 - 1024.
  • 4Toffoli T. Reversible computing[ J]. IEEE cture Notes in Computer Science, 1980(85) :632 - 644.
  • 5Bennett C H. Logical reversibility of computation [ J ]. IBM Journal of Research and Development, 1973,17(6) :525 - 532.
  • 6管致锦,秦小麟,陶涛,施.可逆逻辑门网络的表示与级联[J].电子学报,2010,38(10):2370-2376. 被引量:10
  • 7CJupta P, Agrawal A and Jha N K. An algorithm for synthesis of reversible logic circuits[ J]. Computer-Aided Design of Inte- grated Circuits and Systems, 2000,25( 11 ) :2317 - 2330.
  • 8Maslov D,Dueck G W, Miller D M. Toffoli network synthesis with templates [J]. Computer Aided Design of Integrated Cir- cuits and Systems,2005,24(6) :807 - 817.
  • 9Miller D M. Spectral and tow-place decomposition techniques in reversible logic[ A]. Proceedings of the 45th Midwest Sym- posium on Circuits and Systems [ C ]. Midwest, USA: IEEF/ACM,2002.493 - 496.
  • 10杨忠明,陈汉武,王冬.基于二分法量子可逆逻辑电路综合[J].电子学报,2012,40(5):1045-1049. 被引量:6

二级参考文献57

  • 1Dmitri Maslov,D.Michael Miller.Comparison of the cost metrics for reversible and quantum logic synthesis[J].IET Computers & Digital Techniques,2007,1(2):98-104.
  • 2Yang G,Song X W,Hung N.Perkowski.Group theory based synthesis of binary reversible circuits .Proc.3rd Annual Conference on Theory and Applications of Models of Computation .Anaheim California,USA:IEEE/ACM,2006.365-374.
  • 3M Nielsen,I Chuang.Quantum Computation and Quantum Information[M].Cambridge,UK:Cambridge University Press,2000.56-84.
  • 4R C Merkle.Two types of mechanical reversible logic[J].Nanotechnology,1993,4(4):114-131.
  • 5P Gupta,A Agrawal,K Jhan.An algorithm for synthesis of reversible logic circuits[J].IEEE Trans CAD ICS,2006,25(11):2317-2330.
  • 6H Thapliyal,M B Srinivas.The New BCD subtractor and its reversible logic implementation[J].Lecture Notes in Computer Science,2006,4186:466-472.
  • 7A Mishchenko,M Perkowski.Logic synthesis of reversible wave cascades .International Workshop on Logic and Synthesis .New Orleans,LA:IEEE/ACM,2002.197-202.
  • 8M Perkowski,P Kerntopf,A Buller.Regularity and symmetry as a base for effcient realization of reversible logic circuits .In International Workshop on Logic Synthesis .Piscataway,NJ:IEEE Service Center,2001.245-252.
  • 9D M Miller.Spectral and two-place decomposition techniques in reversible logic .Circuits and Systems .Midwest,USA:IEEE/ACM,2002.493-496.
  • 10D Maslov,G W Dueck,D M Miller.Techniques for the synthesis of reversible Toffoli networks[J].ACM Transactions on Design Automation of Electronic Systems (TODAES),2007,68(12):42-46.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部