期刊文献+

基于用户关系挖掘的多策略推荐算法 被引量:2

Multi-Strategy Recommendation Algorithm Based on User Relation Mining
下载PDF
导出
摘要 个性化推荐服务为解决网络信息过载问题提供了有效手段。传统的推荐方法大多只关注于如何提高推荐的准确性,而忽略了推荐多样性对用户体验的影响。文章将社会网络用户关系挖掘应用于用户偏好预测及推荐中,提出了一种基于用户关系挖掘的多策略推荐算法。采用信任传播模型挖掘用户间的信任度,计算用户偏好配置文件的余弦相似性获得用户间的相似度,并给出4种将用户信任度、相似度结合的策略,在定义用户偏好预测函数的基础上采用Topn原则为用户给出推荐结果。实验结果表明,文章方法不仅减少了数据稀疏性的影响,而且兼顾了推荐准确性与多样性指标,提高了推荐系统的整体性能。 Personalized recommendation service provides an effective means to resolve the information overload problem on the Internet. Traditional researches only pay attention to improving the accuracy of recommendation algorithm while neglect the impact of recommendation diversity on user experience. In this paper, relation mining techniques between social network users are applied to user preference prediction and personalized recommendation, and a multi-strategy recommendation algo- rithm based on user relation mining is proposed. The proposed method employs trust propagation model to mining trust relation between users, and calculates user similar relation based on cosine similarity of users' profile. Then four combination strategies of users' trust and similar relation are proposed. On the basis of defining user preference prediction function, the proposed method pres- ents recommendation results with Top principle. Experimental results confirm that our algorithm not only reduces the impact of data sparsity, but also balances recommendation accuracy with diversity, which improves the overall performance of recommendation system.
机构地区 信息工程大学
出处 《信息工程大学学报》 2013年第4期492-498,共7页 Journal of Information Engineering University
基金 国家863计划资助项目(2011AA7032030D)
关键词 信任传播 多策略结合 偏好预测 推荐多样性 trust propagation multi-strategy combination preference prediction recommendation diversity
  • 相关文献

参考文献15

  • 1Castro-Schez J J, Miguel R, Vallejo D, et al. A highly adaptive recommender system based on fuzzy logic for B2C e-commerce portals [ J ]. Expert Systems with Applications, 2011, 38 ( 3 ) : 2441-2454.
  • 2Jesus Serrano-Guerrero, Enrique Herrera-Viedma, Olivas J A , et al. A google wave-based fuzzy recommender system to dis- seminate information in University Digital Libraries 2.0[ J]. Information Sciences, 2011, 181 (9) : 1503-1516.
  • 3Yuan Xiaofang, Ji-Hyun Lee, Sun-Joong Kim, et al. Toward a user-oriented recommendation system for real estate websites [J]. Information Systems, 2013, 38(2): 231-243.
  • 4黄武汉,孟祥武,王立才.移动通信网中基于用户社会化关系挖掘的协同过滤算法[J].电子与信息学报,2011,33(12):3002-3007. 被引量:26
  • 5Po-Huan Chiu, Gloria Yi-Ming Kao, Chi-Chun Lo. Personalized blog content recommender system for mobile phone users[ J]. International Journal of Human-Computer Studies, 2010, 68 (8) : 496-507.
  • 6Porcel C, Tejeda-Lorente A, Martinez M A, et al. A hybrid recommender system for the selective dissemination of research re- sources in a Technology Transfer Office[ J ]. Information Sciences, 2012, 184 (1) : 1-19.
  • 7Mcnee S M, RiedI J, Konstan I A. Being accurate is not enough: how accuracy metrics have hurt recommender systems[ C ]// Proceedings of the CHI Conference on Human Factors in Computing Systems. 2006: 1097-1101.
  • 8Ugander J, Backstrom L, Marlow C, et al. Structural diversity in social contagion[ J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16) : 5962-5966.
  • 9Bonhard P, Sasse M A. "Knowing me knowing you" using profiles and social networking to improve recommender systems [J]. BT Technology Journal, 2006, 24(3) : 84-98.
  • 10Paolo Massa, Paolo Avesani. Trust-aware recommender systems[ C]//Proceedings of the conference on Recommender sys- tems. 2007 : 17-24.

二级参考文献27

  • 1吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 2Jonna H, Albrecht S, Jani M, et al.. Context-aware mobile media and social networks. Proceedings of the llth International Conference on Human-Computer Interaction with Mobile Devices and Services, Bonn, Germany, 2009: 1-3.
  • 3Ricci F. Mobile recommender systems. International Journal of Information Technology and Tourism, 2011, 12(3): 205-231.
  • 4Wang L C, Meng X W, Zbang Y J, et al.. New approaches to mood-based hybrid collaborative filtering. Proceedings of the Workshop on Context-Aware Movie Recommendation at the 4th ACM Conference on Recommender Systems (ACM Recsys'10), Barcelona, Spain, 2010: 28-33.
  • 5Gediminas A and Alexander T. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 152-162.
  • 6Matthias B and Gernot B. Improving the recommendation of mobile services by interpreting the user's icon arrangement. Proceedings of the llth International Conference on Human-Computer Interaction with Mobile Devices and Services, Bonn, Germany, 2009: 15-18.
  • 7Gupta A, Kalra A, Boston D, et al.. MobiSoC: a middleware for mobile social computing applications. Mobile Networks and Applications, 2009, 14(10): 35-52.
  • 8Arazy O, Kumar N, and Shapira B. Improving social recommender systems. IT Professional, 2009, 11(4): 38-44.
  • 9Dijiang H and Vetri A. Email-based social network trust. IEEE International Conference on Social Computing /IEEE International Conference on Privacy, Security, Risk and Trust Boston. USA , 2010: 363-370.
  • 10Herlocker J, Konstan J, Terveen L, et al.. Evaluating collaborative filtering recommender systems. A CM Transactions on Information Systems, 2004, 22(1): 20-21.

共引文献48

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部