期刊文献+

嗜酸硫杆菌Acidithiobacillus抗砷基因多样性分析 被引量:5

Diversity analysis of arsenic resistance genes in Acidithiobacillus genus
下载PDF
导出
摘要 为探讨嗜酸硫杆菌(Acidithiobacillus)抗砷基因多样性特征,利用生物信息学方法挖掘出嗜酸氧化亚铁硫杆菌(A.ferrooxidans)、喜温嗜酸硫杆菌(A.caldus)和耐冷嗜酸硫杆菌(A.ferrivorans)共49个抗砷基因,主要包括构成ars操纵子模式的arsA、arsB、arsC、arsD、arsH和arsR基因,为嗜酸硫杆菌重要的抗砷遗传因子。研究了49个抗砷基因的聚类与进化关系、理化性质、二级结构、跨膜区、亚细胞定位、砷结合位点等特征。结果表明:这些抗砷基因聚类为11个组,第2组抗砷基因(arsB)为嗜酸硫杆菌所共有,编码泵砷内膜蛋白(ArsB),该基因可能为嗜酸硫杆菌抗砷机制所必需;聚类和进化分析表明其中5个抗砷基因可能源于基因水平迁移;脂溶指数分析显示25个抗砷蛋白脂溶指数大于100,为亲水性蛋白,其余24个抗砷蛋白脂溶指数均小于100,为疏水性蛋白;从不稳定指数分析结果可知,大部分抗砷转录调控因子ArsR是不稳定的,49个抗砷基因蛋白二级结构均由α-螺旋、无规则卷曲和扩展链结构3种形式组成。亚细胞定位分析发现抗砷蛋白在细菌内膜、细菌外膜和细胞周质空间均有出现,ArsB具有10-11个跨膜区;所有抗砷蛋白均无信号肽。对嗜酸硫杆菌的ArsC、ArsD和ArsH抗砷功能蛋白与砷结合位点进行预测和建模,发现活性位点均存在Cys残基;与其他抗砷蛋白结合位点(含Cys残基)不同的是,Acife1530(ArsA)2个甲硫氨酸(Met)与As(III)直接结合,暗示着Met残基中存在与Cys残基功能相同的巯基,由此可见,Cys残基或Met残基的巯基对于构成嗜酸硫杆菌抗砷功能蛋白与砷结合的活性位点是必不可少的。 To explore the diversity of arsenic resistance genes in Acidithiobacillus genus, 49 arsenic resistance genes were mined by bioinformatics method from species of A. ferrooxidans, A. caldus, and A. ferrivorans. These 49 genes are ars-related includingarsA, arsB, arsC, arsD, arsH and arsR, which form the arsenic-resistance operon. The characteristic of arsenic resistance genes were analyzed on basis of their clustering and evolution, physicochemical properties, secondary structure, transmembrane regions, subcellular localization, and arsenic binding sites. Results showed that all 49 arsenic resistance genes were clustered into 11 groups, of which the arsB gene belonging to the second group was common with Acidithiobacillus genus. The arsB gene, coding for the arsenical pump membrane protein (ArsB) may be essential to the arsenic resistance of Acidithiobacillus strains. The clustering and evolution analyses showed that five arsenic resistance genes may originate from the horizontal gene transformation. Aliphatic index analysis showed that 25 arsenic resistance proteins were hydrophilic and the other 24 were hydrophobic. The instability indices revealed that most of ArsRs were unstable. The secondary structures of corresponding 49 arsenic resistance proteins were comprised ofα-helix, random coil, and extended chain. Subcellular localization analysis implied that arsenic resistance proteins might exist in inner and outer membrane, periplasmic space, and cytoplasm. ArsB proteins contained 10-11 transmembrane regions, and no signal peptide was found in all arsenic resistance proteins. Based on the arsenic binding site prediction and modeling results, we found that the Cys residues occurred in all active sites of ArsC, ArsD and ArsH proteins. Compared with other arsenic resistance proteins, the active sites of protein Acife1530 (i.e. ArsA) possessed two Met residues binding As (III), implying that the thiol probably existed in Met and played a same role in binding As (III) directly as that in Cys residue. Therefore, the thiol in Cys or Met residue is vital for the arsenic binding site of arsenic resistant proteins in Acidithiobacillus microorganisms.
出处 《生态环境学报》 CSCD 北大核心 2013年第7期1141-1147,共7页 Ecology and Environmental Sciences
基金 国家自然科学基金项目(51064007) 江西省科技厅对外科技合作计划项目(20111bdh80032) 江西省科技厅科技支撑计划项目(20123bbf60170 20121BBG70004) 江西省教育厅科学技术研究项目(GJJ13397)
关键词 嗜酸硫杆菌 抗砷基因 聚类分析 多样性分析 生物信息学 Acidithiobacillus arsenic resistance gene ortholog analysis diversity analysis bioinformatics
  • 相关文献

参考文献29

  • 1RAWLINGS D E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories, 2005, 4 (1): 13.
  • 2赖绍师,覃文庆,杨聪仁,张雁生.高砷原生硫化铜矿细菌浸出试验研究[J].矿冶工程,2011,31(3):55-58. 被引量:10
  • 3CERVANTES C, JI G, RAMIREZ J L, et al. Resistance to arsenic compotmds in microorganisms[J]. FEMS Microbiology Reviews, 1994 15 (4): 355-367.
  • 4JI G, SILVER S. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258[J]. Proceedings of the National Academy of Sciences U S A, 1992, 89 (20): 9474-9478.
  • 5SALTIKOV C W, NEWMAN D K. Genetic identification of a respiratory arsenate reductase[J]. Proceedings of the National Academy of Sciences U S A, 2003, 100 (19): 10983-10988.
  • 6历丽,夏金兰,徐爱玲,刘可可,聂珍媛.抗砷细菌arsH基因多样性分析[J].现代生物医学进展,2010,10(9):1650-1653. 被引量:1
  • 7FISCHER S, BRUNK B P, CHEN F, et al. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups[J]. Current Protocols in Bioinformatics, 2011, Chapter 6, Unit 6.12: 1-19.
  • 8WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology, 1999, 112:531-552.
  • 9COMBET C, BLANCHET C, GEOURJON C, et al. NPS@: network protein sequence analysis[J]. Trends in Biochemical Sciences, 2000, 25 (3): 147-150.
  • 10KROGH A, LARSSON B, VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. Journal of Molecular Biology, 2001, 305 (3): 567-580.

二级参考文献28

  • 1白建峰,林先贵,尹睿,张华勇.砷污染土壤的生物修复研究进展[J].土壤,2007,39(5):692-700. 被引量:17
  • 2施晓东,常学秀.重金属污染土壤的微生物响应[J].生态环境,2003,12(4):498-499. 被引量:23
  • 3Ronald SO, John FS. The Ecology of Arsenic [J]. Science, 2003, 300 (9): 939-944.
  • 4Inskeep WP, Macur RE, Hamamura N, et al, Detection, diversity and expression of aerobic bacterial arsenite oxidase genes [J]. Environ Microbiol, 2007, 9(4):934-943.
  • 5Jackson CR, Dugas SL, Harrison KG. Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils [J]. Soil Biol Biochem, 2005, 37(12): 2319-2322.
  • 6Patel PC, Goulhen F, Boothman C, et al. Arsenate detoxification in a Pseudomonad hypertolerant to arsenic[J]. Arch Microbiol, 2007, 187: 171-183.
  • 7Dembitsky V.M, Levitsky DO. Arsenolipids [J]. Prog Lipid Res, 2004, 43(5):403-448.
  • 8Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res, 1997, 25(24), 4876-4882.
  • 9Schloss, PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J]. Appl Environ Microbiol, 2005, 71 (3): 1501-1506.
  • 10Valde s J, Pedroso I, Quatrini R, et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications [J]. BMC Genomics, 2008, 9:597.

共引文献9

同被引文献65

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部