期刊文献+

Global existence and decay of solutions for the generalized bad Boussinesq equation 被引量:3

Global existence and decay of solutions for the generalized bad Boussinesq equation
下载PDF
导出
摘要 In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)-(1/7) when t approaches to infinity, provided the initial data are sufficiently small and regular. In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)-(1/7) when t approaches to infinity, provided the initial data are sufficiently small and regular.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第3期253-268,共16页 高校应用数学学报(英文版)(B辑)
关键词 bad Boussinesq equation global existence asymptotic behavior oscillatory integral. bad Boussinesq equation, global existence, asymptotic behavior, oscillatory integral.
  • 相关文献

参考文献27

  • 1D G Akmel. Global existence and decay for solution to the bad Boussinesq equation in two space dimensions, Appl Anal, 2004, 83: 17-36.
  • 2J Albert. On the decay of solutions of the generalized Benjamin-Bona-Mahony equation, J Math Anal Appl, 1989, 141: 527-537.
  • 3P Biler. Long time behavior of solutions of the generalized Benjami-Bona-Mahony equation in two space dimensions, Differential Integral Equations, 1992, 5: 891-901.
  • 4J Boussinesq. Theorie des ondes et des remous qui se propagent le long d'un canal rectangu- laire horizontal, en communiquant au liquide continu dans 21 ce canal des vitesses sensiblement pareilles de la surface au fond, J Math Pures Appl, 1872, 17: 55-108.
  • 5G Chen, S Wang. Existence and nonexistence of global solutions for the generalized IMBq equa- tions, Nonlinear Anal, 1999, 36: 961-980.
  • 6P Deift, C Tomei, E Trubowitz. Inverse scattering and the Boussinesq equation, Comm Pure Appl Math, 1982, 35: 567-628.
  • 7X Han, M Wang. General decay of energy for a viscoelastic equation with nonlinear damping, J Franklin Inst, 2010, 347: 806-817.
  • 8R S Johnson. A two dimensional Boussinesq equation for water waves and some of its solutions, J Fluid Mech, 1996, 323: 65-7"8.
  • 9I T Kato, G Ponce. Commutator estimates and the Euler and Navier Stokes equations, Comm Pure Appl Math, 1988, 41: 891-907.
  • 10M Lakshmanan. Nonlinear physics: Integrability, chaos and beyond, J Franklin Inst, 1997, 334: 909-969.

同被引文献2

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部