期刊文献+

软土工程性质与微观结构关系的神经网络模型 被引量:11

Neural Network Model on the Relationship between Engineering Properties and Microstructure of Soft Soils
原文传递
导出
摘要 软土的工程性质很大程度上取决于它的内部结构。通过对广州南沙地区软土的物理力学试验获取了土的物理力学性质指标,利用扫描电镜分析和图像处理技术获取了软土的微观结构参数。运用Matlab神经网络工具箱编程,建立了软土工程性质指标与微观结构参数的RBF神经网络模型。通过两个分析模型(模型Ⅰ和模型Ⅱ)的实例研究表明,RBF网络模型具有结构简单,计算速度快,精度高,泛化能力强、性能稳定的优点。该方法可以作为软土宏微观关系建模的有效途径和软土微观结构试验的有效补充,可为软土工程可靠性分析和软基处理设计提供参考依据。 The engineering properties of soft soil depend on microstructure characteristics. Through a large number of physieo-mechanical tests, microstructure analysis and Image processing technology of soft soils in Nansha area, Guangzhou, China, the physico-mechanical indexes and microstructure parameters are obtained. RBF networks models for the relationship between engineering properties and microstrueture parameters of soft soil are established through radial basis function neural networks and Matlab neural network toolbox. Compared with BP neural networks, the empirical results of two models ( model Ⅰ and model Ⅱ) indicate that RBF neural networks have advantages of a simple structure, fast computation, high accuracy and strong generalization ability. This method can be used as a supplementary way for microstructure test of soft soil, and provide an efficient way to quantitative study about relation- ship between macro engineering properties and microstructure of soft soils. Moreover, the method can give a good refer- ence for the reliability analysis of soft soil engineering and ground treatment design.
出处 《地下空间与工程学报》 CSCD 北大核心 2013年第4期777-782,共6页 Chinese Journal of Underground Space and Engineering
基金 获国家自然科学基金(51178122) 广东省自然科学基金(S2011040004133) 广东省大学生创新实验项目(118450088 118450089)
关键词 RBF神经网络 软土 土的工程特性 微结构参数 MATLAB Radial Basis Function neural networks soft soil engineering properties of soil microstrueture parameters Matlab
  • 相关文献

参考文献10

二级参考文献72

共引文献730

同被引文献118

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部