期刊文献+

基于支持向量机的风电机组故障预警 被引量:8

Failure Prediction of Wind Turbine Based on Least Square Support Vector Machines
下载PDF
导出
摘要 风电机组的故障诊断是保证机组稳定运行、降低机组维护费用的关键。简要介绍了风电机组的基本结构及故障类型,讨论了风电机组实际应用中的主要故障诊断方法;提出了一种基于最小二乘支持向量机(LS-SVM)的风电机组故障预警方法,利用实际风场机组运行监控数据验证了此方法的可行性,并与神经网络方法的预测结果进行比较。结果表明,基于LS-SVM的方法更加快速有效,具有准确的故障识别能力。 The fault diagnosis is crucialto ensure a consistently secure operation of wind turbine and to reduce the maintenance costs of wind turbine.This paper introduces the basic structure and type of wind turbine failures,and expounds the actual application of the fault diagnosis technology.A method of prediction of wind turbine based on least squares support vector machines(LS-SVM) is proposed,apply the fault prediction algorithms to the actual condition monitoring data in a wind farm,whichproves the feasibility of this method.
作者 许骏龙 李征
出处 《工业控制计算机》 2013年第8期54-56,共3页 Industrial Control Computer
基金 上海市科委项目(11dz1200204)资助
关键词 风电机组 故障预警 状态监测 最小二乘支持向量机 wind turbines condition monitoring fault diagnosis least square support vector machines
  • 相关文献

参考文献5

  • 1J.Ribrant.Reliability Performance and MaintenanceA Survey of Failures in WindPower Systems.KTH School of Electrical Engineering,2006:59-72.
  • 2Frank P M.Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results.Automatics,1990,26(3),459-474.
  • 3彭华东,陈晓清,任明,杨代勇,董明.风电机组故障智能诊断技术及系统研究[J].电网与清洁能源,2011,27(2):61-66. 被引量:34
  • 4胡良谋,曹克强,徐浩军,等.支持向量机故障诊断及控制技术[M].北京:国防工业出版社,2011.
  • 5赵洪山,胡庆春,李志为.基于统计过程控制的风机齿轮箱故障预测[J].电力系统保护与控制,2012,40(13):67-73. 被引量:44

二级参考文献35

  • 1杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 2梁平,范立莉,龙新峰.非线性模型在汽轮发电机组振动故障预测中的应用[J].华南理工大学学报(自然科学版),2006,34(6):122-126. 被引量:8
  • 3Mid and Long Range Plan for Renewable Energy Development[R].Chinese Committee for National Development and Reform,2007.
  • 4Highlights of the World Wind Energy Report 2008[R/OL].World Wind Energy Association.http://www.wwindea.org/home/index.php.
  • 5WALFORD C A.Wind Turbine Reliability:Understanding and Minimizing Wind Turbine Operation and Maintenance Costs[R].Sandia Report,SAND2006-1100,2006.
  • 6WILKINSON M R,SPIANTO F,KNOWLES M,et al.Towards the Zero Maintenance Wind Turbine[C]//Proceedings of 41st International Universities Power Engineering Conference,2006,1:74-78.
  • 7AMIRAT Y,BENSAKER MEH,WAMKEUE R.Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems:a Review[C]//Proceedings of the International Electric Machines and Drive Conference,2007:1434-1439.
  • 8RIBRANT J,BERTLING L M.Survey of Failures in Wind Power Systems With Focus on Swedish Wind Power Plants during 1997-20050].IEEE Transactions on Energy Conversion,2007,22(1):167-173.
  • 9LU Bin,U Yaoyu,LI Xin,et al.A Review of Recent Advances in Wind Turbine Condition Monitoring and Fault Diagnosis[J].IEEE Power Electronics and Machines in Wind Applications,2009:109-115.
  • 10POPA L M,RITCHIE E,BOLDEA I,et al.Condition Monitoring of Wind Generators[J].IEEE Industry Applications Society Annual Meeting,2003,3:1839-1846.

共引文献97

同被引文献89

  • 1张照煌,丁显,刘曼,曾菊瑛.基于小波变换的风电机组传动系统故障诊断与分析[J].应用基础与工程科学学报,2011,19(S1):210-218. 被引量:16
  • 2陈伟,胡昌华,曹小平,樊红东,方华元.基于最小二乘支撑矢量机的陀螺仪漂移预测[J].宇航学报,2006,27(1):135-138. 被引量:11
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4张冀,王兵树,邸剑,于浩,鲁斌.传感器多故障诊断的信息融合方法研究[J].中国电机工程学报,2007,27(16):104-108. 被引量:23
  • 5GB/T4883-2008,数据的统计处理和解释正态样本离群值的判断和处理[s].
  • 6Silva G C, Palhares R M, Caminhas W M. Immune inspired fault detection and diagnosis:A fuzzy-based approach of the negative selection algorithm and participatory clustering [J]. Expert Systems with Applications,2012,39(16): 12474-12486.
  • 7Zhang Q H, Qin A S, Shu L, et al. Vibration sensor based intelligent fault diagnosis system for large machine unit in petrochemical industry [C]//2013 9th International Wireless Communications and Mobile Computing Conference, 2013: 1376-1381 '.
  • 8Kang M,Kim J. Reliable Fault Diagnosis of Multiple Induction Motor Defects Using a 2-D Representation of Shannon Wavelets[J].lEEE Transactions on Magnetics,2014,50(10):1-13.
  • 9孙翔,何文林,姚晖,等.基于显著性差异的变压器套管介损统计分析[M].西安:西安高压电器研究所,2014:4-6.
  • 10高祥宝.数学分析与SPSS应用[M].北京:清华大学出版社,2007.

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部