期刊文献+

废旧锂离子电池中钴和锂的回收及综合利用 被引量:31

Recovery of Co and Li from spent lithium-ion batteries and their comprehensive utilization
下载PDF
导出
摘要 采用湿式破碎分选,硫酸硫代硫酸钠浸出,碱和P204萃取除杂,P507萃取分离钴和锂,用草酸和碳酸钠沉淀法从废旧锂电池中回收草酸钴和碳酸锂,研究废旧锂离子电池的综合利用。结果表明:湿式破碎分选能有效分离出约97%(质量分数)的铜铝混合物、有机薄膜、钴酸锂和碳粉混合物,且能防止氟化氢气体的生成;硫酸硫代硫酸钠浸出含少量铜、铝的钴酸锂和碳粉混合物最佳条件如下:氢离子浓度3 mol/L、硫代硫酸钠浓度0.25 mol/L、液固比15:1(液体体积与固液质量之比,mL/g)、反应温度90℃、反应时间2.5 h,钴和锂的浸出率大于97%;通过除杂能有效去除大部分镍、铜和铝等杂质,制得草酸钴纯度为98.4%,碳酸锂纯度为99.3%。 Cobalt oxalate and lithium carbonate were recovered from spent lithium-ion batteries via several processes, including wet crushing and separation, leaching with the mixture of sulphuric acid and sodium thiosulfate, purification with alkali and P204, and extraction separation with P507. The results show that about 97%(mass fraction) copper aluminum mixture, organic membrane, lithium cobalt oxide and carbon powder mixture can be effectively separated by wet crushing and separation. This process can also prevent the generation of hydrogen fluoride. Moreover, the optimal condition for the process is as follows:3 mol/L hydrogen ion and 0.25 mol/L sodium thiosulfate, ratio of liquid to solid 15:1 (ratio of liquid volume to solid mass, mL/g), leaching temperature 90 ℃, leaching time 2.5 h, extraction rates of cobalt and lithium over 97%. Subsequently, most impurities, such as nickel, copper and aluminum, can be removed by the following purification. The final purities of cobalt oxalate and lithium carbonate reach 98.4%and 99.3%, respectively.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第7期2047-2054,共8页 The Chinese Journal of Nonferrous Metals
基金 国家"十二五"科技支撑计划项目(2011BAF11B06) 国家高技术研究发展计划项目(2013AA040207)
关键词 废旧锂离子电池 回收 破碎分选 浸出 除杂 沉淀 spent lithium-ion batteries recovery crushing and separation leaching purification precipitation
  • 相关文献

参考文献23

  • 1YU J L, WILLIAMS E, JU M. Analysis of material and energy consumption of mobile phones in China[J]. Energy Policy, 2010, 38(8): 4135-4141.
  • 2何向明,李建刚,王莉,任建国.锂离子电池发展的前瞻--第14届国际锂电池会议评述[J].电池,2008,38(4):221-224. 被引量:12
  • 3LAIN M J. Recycling of lithium ion cells and batteries[J]. Journal of Power Sources, 2001, 97/98: 736-738.
  • 4DORELLA G, MANSUR M B. A study of the separation of cobalt from spent Li-ion battery residues[J]. Journal of Power Sources, 2007, 170(1 ): 210-215.
  • 5周旭,朱曙光,次西拉姆,贺文智,李光明,黄菊文.废锂离子电池负极材料的机械分离与回收[J].中国有色金属学报,2011,21(12):3082-3086. 被引量:32
  • 6QIN Yi-hong, QI Shen. The treatment of waste lithium-ion batteries by organic solvent partition process[J]. Nonferrous Metals, 2006(1): 13-16.
  • 7胡传跃,郭军,汪形艳,崔佳,易涛.从废旧锂离子电池中回收钴和铝的工艺[J].电池,2006,36(6):481-482. 被引量:29
  • 8ZHANG P W, YOKOYAMA T, ITABASHI O, SUZUKI T M,1NOUE K. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries[J]. Hydrometallurgy, 1998, 47(2/3): 259-271.
  • 9PAULINO J F, BUSNARDO N G, AFONSO J C. Recovery of valuable elements from spent Li-batteries[J]. Journal of Hazardous Materials, 2008, 150(3): 843-849.
  • 10KANG J, SENANAYAKE G, SOHN J, SHIN S M. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272[J]. Hydrometallurgy, 2010, 100(3/4): 168-171.

二级参考文献36

共引文献83

同被引文献250

引证文献31

二级引证文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部