期刊文献+

微博转发预测算法评测系统的建立及性能比较 被引量:2

The Microblog Retweeting Prediction Evaluation System and Performance Comparation
下载PDF
导出
摘要 为解决微博转发行为预测问题,提出了一个基本的预测算法评测系统框架.该系统解决了原始微博数据的抓取和预处理,以及用户微博的转发和忽略行为的判定,微博和用户的特征提取等问题,为解决微博转发行为预测问题提供了技术基础.详细分析了现有文献和工作中的微博转发行为预测算法,阐述了它们的基本原理.通过定量实验分析了不同微博转发行为预测算法的在局部预测问题和全局预测问题方面的性能,并且从算法的原理等方面出发给出了定性的分析. In order to solve the microblog retweeting prediction problem, firstly we constructed a basic predic- tion algorithm testing system which solves the origin data crawling and preprocessing problem. It also handles the feature retrieving and user social action judging problem. This system provides technical base for solving the mi- croblog retweeting prediction problem. Secondly, we analyze the four representative algorithms of solving the target problem in detail. We conducted different experiments for quantitatively analyzing the algorithms' performance sol- ving both the local prediction problem and the global prediction problem, respectively.
出处 《哈尔滨理工大学学报》 CAS 2013年第4期52-57,共6页 Journal of Harbin University of Science and Technology
基金 黑龙江省教育厅科学技术研究项目(12523021) 中央高校基本科研业务费专项资金(DL11AC07)
关键词 微博转发 逻辑斯蒂回归 支持向量机 因子图模型 传染病模型 retweeting logistic regression SVM factor graph model epidemic model
  • 相关文献

参考文献8

  • 1DAVID Liben-Nowell,KLEINBERG Jon M."Tracing Information Flow on a Global Scale Using Internet Chain-letter Data[C] //Proceedings of the National Academy of Sciences,2008,105 (12):4633-4638.
  • 2张旸,路荣,杨青.微博客中转发行为的预测研究[J].中文信息学报,2012,26(4):109-114. 被引量:70
  • 3KSCHISCHANG F,MEMBER S,FREY B J,et al.Factor Graphs and the Sum-Product Algorithm[J].IEEE Transactions on Information Theory,2001,47(2):498519.
  • 4TAN Chenhao.Social Action Tracking via Noise Tolerant Time-varying Factor Graphs[C] //Proceedings of the 16th ACM SIGK-DD International Conference on Knowledge Discovery and Data Mining.New York,NY,USA:ACM,2010:1049-1058.
  • 5SONG Xiaodan.Information Flow Modeling Based on Diffusion Rate for Prediction and Ranking[C].Proceedings of the 16th International Conference on World Wide Web.New York,NY,USA:ACM,2007:191-200.
  • 6刘臣,田占伟,于晶,单伟.在线社会网络用户的信息分享行为预测研究[J].计算机应用研究,2013,30(4):1017-1020. 被引量:2
  • 7LI Yiping,LENG Zhaonan,WANG Hao.ReTweet:Modeling and Predicting Tweets Spread Using an Extended Susceptible-InfectedSusceptible Epidemic Model[C] //Database Systems for Advanced Applications SE,2013:454-457.
  • 8YANG Zi.Understanding Retweeting Behaviors in Social Networks[C] //Proceedings of the 19th ACM International Conference on Information and Knowledge Management,New York,NY,USA:ACM,2010:1633-1636.

二级参考文献31

  • 1R. Lahan. The Economics of Attention[M]. Univer- sity of Chicago Press, 2006.
  • 2Pete Cashmore. YouTube: Why Do We Watch? [DB/ OL]. http://editin, cnn. com/2009/TECH/12/17/ cashmore, youtube/ index, html, 2010.
  • 3J. Berger, K. L. Milkman. Social Transmission, E- motion, and the Virality of Online Content[R]. Whar- ton Research Paper, 2010.
  • 4A. Tumaslan, T. O. Sprenger, P. G. Sanduer, et al. Predicting Elections with Twitter: What 140 Charac- ters Reveal about Political Sentiment[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. ICWSM,10, 2010.
  • 5J. Bollen, H. Mao, A. Pepe. Determining the public mood state by analysis of mieroblogging posts[C]// Proceedings of the Alife XII Conference MIT Press, 2010.
  • 6T. Sakaki, M. Okazaki, Y. Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors[C]//Proceedings of WWW,10, 2010.
  • 7Y. Qu, C. Huang, P. Zhang, et al. Microblogging after a Major Disaster in China: A Case Study of the Yushu Earthquake [C]//Proeeedings of CSCW2011, 2011.
  • 8H. Kwak, C. Lee,H. Park, et al. What is Twitter, a ,Social Network or a News Media[C]//Proceedings of WWW'IO, 2010.
  • 9D. Boyd, S. Golder, G. Lotan. Tweet, tweet, retweet: Conversational aspects of retweeting on Twit- ter [ C]//Proceedings of 43rd Hawaii International Conference on System Sciences, 2010.
  • 10B. Suh, L. Hong, P. Pirolli, et al. Want to be Retweeted? Large Scale Analytics on Factors Impac- ting Retweet in Twitter Network[C]//Proceedings of IEEE 2nd International Conference on Social Compu- ting (SocialCom), IEEE. 2010:177-184.

共引文献70

同被引文献29

  • 1SUH B, HONG L C, PIROLLI P, et al. Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network [C]// Proceedings of the 2010 IEEE International Conference on Social Computing. Piscataway: IEEE, 2010: 177-184.
  • 2XU Z, YANG Q. Analyzing user retweet behavior on twitter [C]// Proceedings of 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE, 2012: 46-50.
  • 3ROMERO D M, MEEDER B, KLEINBERG J. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter [C]// Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011: 695-740.
  • 4WENG J, LIM E P, JIANG J. TwitterRank: finding topic-sensitive influential twitterers [C]// Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York: ACM, 2010: 261-270.
  • 5WELCH M J, SCHONFELD U, HE D. Topical semantics of twitter links [C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 327-336.
  • 6MORCHID M, DUFOUR R, LINARES G, et al. Feature selection using principal component analysis for massive retweet detection [J]. Pattern Recognition Letters, 2014, 49(11): 33-39.
  • 7PENG H, ZHU J, PIAO D Z, et al. Retweet modeling using condi-tional random fields [C]// ICDMW'11: Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops. Washington, DC: IEEE Computer Society, 2011: 336-343.
  • 8LUO Z, WU X, CAI W, et al. Examining multi-factor interactions in microblogging based on log-linear modeling [C]// Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2012: 189-193.
  • 9BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
  • 10BREIMAN L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部