期刊文献+

单轴有限推力下卫星轨道快速机动控制

Rapid orbital maneuver control of satellite using finite single axis thruster
下载PDF
导出
摘要 针对仅能提供单轴推力的卫星轨道机动的快速性问题,提出了一种利用高斯伪谱法来求解最优控制问题的方法.通过引入"虚拟卫星"的概念,将卫星轨道机动问题转化为实际卫星与虚拟卫星的软交会问题.建立了相对运动方程,以机动时间为性能指标,利用高斯伪谱法将最优控制问题转化为非线性规划问题,避开了求解两点边值问题的困难.通过使用MATLAB优化工具箱求解得到最优轨迹.结果表明,高斯伪谱法针对多约束、非线性强耦合方程,求解速度快,精度高,对初值选取不十分敏感,寻优能力强,且具有一定的鲁棒性. A Gauss pseudo-spectral method is proposed to solve optimal control problem for satellite rapid orbital maneuver, in which only one axis thruster is provided under the finite thrust. The concept of "virtual satellite" transforms the orbital maneuver of satellite into the soft rendezvous of the satellite and virtual satellite. The relative motion equations are then formulated and the maneuver time is selected as cost function for the optimal control problem, which is transformed to a nonlinear programming problem by using the Gauss pseudo-spectral method. This approach avoids the difficulties in solving boundary value problem. Finally, the optimal trajectory is solved by using MATLAB optimization toolbox. The results show that the Gauss pseudo- spectral method is very effective for solving the multiple constrained nonlinear strongly coupled equations, and it isn't very sensitive to initial data and has certain robustness.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第7期13-17,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61004072 61273175) 教育部新世纪优秀人才计划资助项目(NCET-11-0801) 黑龙江省青年基金资助项目(QC2012C024)
关键词 高斯伪谱法 虚拟卫星 轨道机动 时间最优 Gauss pseudo-spectral method virtual satellite orbital maneuver time optimal
  • 相关文献

参考文献16

  • 1PRUSSING J E. Optimal two and three-impulse fixed- time rendezvous in the vicinity of a circular orbit [ J ]. Journal of Spacecraft and Rockets, 2003, 40 ( 6 ) : 1221 - 1228.
  • 2WANG JianXia,BAOYIN HeXi,LI JunFeng,SUN FuChun.Optimal four-impulse rendezvous between coplanar elliptical orbits[J].Science China(Physics,Mechanics & Astronomy),2011,54(4):792-802. 被引量:6
  • 3王翔,龚胜平,宝音贺西,李俊峰.多冲量近圆轨道交会的快速打靶法[J].空间控制技术与应用,2010,36(5):1-6. 被引量:9
  • 4PONTANI M, CONWAY B A. Particle swarm optimization applied to impulsive orbital transfers [ J ]. Acta Astronautica, 2012, 74 (3) : 141 - 152.
  • 5SANTOS D P S, COLASURDO G. Four-impulsive rendezvous maneuvers for spacecrafts in circular orbits using genetic algorithms [ J ]. Mathematical Problems in Engineering, 2012, 2012:1 -16.
  • 6EERIGHT P J, CONWAY B A. Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming [ J ]. Journal of Guidance Control and Dynamics, 1991, 14(5) : 981 -985.
  • 7THORNE J D, HALL C D. Minimum-time continuous- thrust orbit transfers using the kustaanheimo-stiefel transformation [ J ]. Journal of Guidance, Control, and Dynamics, 1997, 20(4) : 836 - 838.
  • 8OCAMPO C. Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system [ J ]. Annals of the New York Academy of Sciences, 2004, 1017(1) : 210-233.
  • 9RANIERI C L, OCAMPO C A. Optimization of roundtrip, time-constrained, finite burn trajectories via an indirect method [ J ]. Journal of Guidance, Control, and Dynamics, 2005, 28(2) : 306 -314.
  • 10BETTS J T. Survey of numerical methods for trajectory optimization [ J ]. Journal of Guidance, Control, and Dynamics, 1998, 21 (2) : 193 - 207.

二级参考文献46

  • 1罗建军,王明光,袁建平.基于伪光谱方法的月球软着陆轨道快速优化[J].宇航学报,2007,28(5):1119-1122. 被引量:16
  • 2孙军伟,乔栋,崔平远.基于SQP方法的常推力月球软着陆轨道优化方法[J].宇航学报,2006,27(1):99-102. 被引量:35
  • 3朱建丰,徐世杰.基于自适应模拟退火遗传算法的月球软着陆轨道优化[J].航空学报,2007,28(4):806-812. 被引量:46
  • 4Fahroo F,Ross I M.On discrete-time optimality conditions for pseudospectral methods[C]// AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Keystone,CO,2006.
  • 5Prussing J E. Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit[J]. AIAA Journal, 1969, 7(5):928-935.
  • 6Prussing J E. Optimal two- and three-impulse fixed-time rendezvous in the vicinity of a circular orbit[J]. AIAA Journal, 1970, 8(7) :1221-1228.
  • 7Prussing J E. Optimal impulse linear systems: sufficient conditions and maximum number of impulses[ J]. Journal of the Astronautical Sciences, 1995,43 ( 2 ) : 195-206.
  • 8Prussing J E. A class of optimal two-impulse rendezvous using multiple-rendezvous between circular orbits [J]. Journal of Guidance, Control and Dynamics, 1986, 9 (1) :17-22.
  • 9Hughes S P,Mailhe L M, Guzman J J. A comparison of trajectory optimization methods for the impulsive minimum propellant rendezvous problem [ J ]. Advances in the Astronautical Sciences, 2003, 13:85-104.
  • 10Carter T E, Brient J. Linearized impulsive rendezvous problem[ J]. Journal of Optimization Theory and Applications, 1995, 86(3) :553 -584.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部