期刊文献+

子流形平均曲率向量场的线性相关性 被引量:4

Linear Dependence of Mean Curvature Vector Fields of Submanifold
原文传递
导出
摘要 在空间形式中,均造了子流形的一类泛函,其包含r极小泛函与体积泛函(极小)作为特殊情形,此类泛函的临界点称之为(r+1,λ)-平行子流形.对于(r+1,λ)-平行子流形,给出了代数,微分和变分刻画.更进一步,研究了(r+1,λ)-平行子流形的稳定性,证明了Simons型不存在定理:在一定条件下((r,λ)-函数S_(r,λ)为正),球面中不存在稳定的(r+1,λ)-平行子流形. A class of functional is found in space forms such that its critical points include r-minimal submanifolds and minimal submanifolds as special cases.The critical points are defined as(→r+1,→λ)-parallel submanifolds.We obtain algebraic,differential and variational characterizations of the(→r+1,→λ)-parallel submanifolds.Moreover,we prove a Simons' type nonexistence theorem which says that in the unit sphere there exists no stable(→r+1,→λ)-parallel submanifold with its corresponding(→r→,λ)-function S(→r,→λ) positive.
作者 刘进
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第5期669-686,共18页 Acta Mathematica Sinica:Chinese Series
关键词 (r+1 λ)-平行子流形 (r λ)-函数 Q_r算子 (r+1 λ)-parallel submanifold (r λ)-function Q_r operators
  • 相关文献

参考文献11

  • 1Alencar H.,do Carmo M.,Elbert M.F.,Stability of hypersurfaces with vanishing r-mean curvatures in Euclidean spaces,J.Reine Angrew.Math.,2003,554:201-206.
  • 2Barbosa J.L.M.,Colares A.G.,Stability of hypersurfaces with constant r-mean curature,Ann.Global Anal.Geom.,1997,15:277-297.
  • 3Cao L.F.,Li H.Z.,r-minimal submanifolds in space forms,Ann.Global Anal.Geom.,2007,32:311-341.
  • 4Cheng S.Y.,Yau S.T.,Hypersurface with constant scalar curvature,Math.Ann.,1977,225:195-204.
  • 5Chern S.S.,Minimal Submanifolds in a Riemannian Manifold(mimeographed),University of Kansas, Lawrence,1968.
  • 6do Carmo M.,Elbert M.F.,On stable complete hypersurface with vanishing r-mean curvature,Tohoku Math.J.,2004,56(2):155-162.
  • 7He Y.J.,Li H.Z.,Stability of area-preserving variation in space forms,Ann.Global Anal.Geom.,2008,34: 55-68.
  • 8Hu Z.J.,Li H.Z.,Willmore Submanifolds in Riemannian Manifolds,Proceedings of the Workshop,Contem. Geom.and Related Topics,World Scientific,Singapore,2005:251-275.
  • 9Li A.M.,A class of variational problems and integral formula in Riemannian manifold,Acta Mathematica Sinica,Chinese Series,1985,28(2):145-153.
  • 10Simons J.,Minimal varieties in Riemannian manifolds,Ann.Math.2nd Ser.,1968,88(1):62-105.

同被引文献26

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部