期刊文献+

基于最小二乘法的反应流拉格朗日分析在冲击起爆中的研究 被引量:1

Reactive flow Lagrangian analysis with least squares in shock to detonation transition
下载PDF
导出
摘要 现有反应流拉格朗日分析方法在已知粒子速度情况下,求解方法仍有不足。本文针对这一情况,将反解法与自洽检验法相结合,提出了基于最小二乘法的反应流拉格朗日反解法,该方法的理论精度能够实现应力沿路径线的M阶导数为零(M为迹线数),并且该方法能够满足自洽检验法。为了验证该方法的有效性,利用该方法对一组小隔板冲击起爆试验数据进行了处理,对比了本文方法、试验处理以及传统的反解法处理结果,表明该方法不仅可以适当减小迹线上的偶然误差,还能够使得迹线函数更好地反映各物理量沿迹线的变化性态。 The existing reactive flow Lagrangian analysis methods are still inadequate when measured the particle velocity records from a series of gauges embedded in material. Based on this point,a new reactive flow Lagrangian analysis method combined the inverse analysis with self-consistency examination is pres- ented. The theoretical accuracy of the method met the self-consistency examination can achieve M-order partial derivatives equal to zero. Besides, the verification of the method for shock to detonation transition (SDT) is studied by a set of test data of small scale gap tests (SSGT). Compared the method,experiment and the traditional inverse analysis results, it not only reduced the accidental error of particle-line, but al- so makes the particle-line function to reflect the behavior of the various physical quantities along the par- ticle-line.
出处 《计算力学学报》 CAS CSCD 北大核心 2013年第4期570-574,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10972060) 高等学校博士学科点科研基金(20104410110003) 广州大学新苗计划(2012-17)资助项目
关键词 反应流拉格朗日分析 冲击起爆 最小二乘 reactive flow Lagrangian analysis SDT least squares
  • 相关文献

参考文献12

  • 1孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 国防工业出版社, 2000.
  • 2Fowles R,Williams R F. Plane stress wave propaga- tion in solids[J]. J. Appl. Phys. , 1970,41 (1) : 360- 363.
  • 3Cowperthwaite M, Williams R F. Determination of constitutive relationships with multiple gauges in non- divergent waves [J]. J. Appl. Phys. , 1971,42 (1) : 456-462.
  • 4Grady D E. Experimertal analysis ofspherical wave propagation[J]. Geo. Res. , 1973,78(8) : 1299-1307.
  • 5Seaman L. Lagrangian analysis for multiple stress or velocity gages in attenuating waves [J]. J. Appl. Phys. , 1974,4S(10) : 4303-4314.
  • 6Seaman L. Lagrangian Analysis for Stress and Parti- cle Velocity Gauges [R]. Technical Report No. PU- 6319,SRI Int. ,USA,1984.
  • 7柴华友,唐志平.曲面拟合在拉格朗日反分析方法中应用的探讨[J].爆炸与冲击,1992,12(3):259-269. 被引量:8
  • 8Gupta Y M. High strain-rate shear deformation of a polyurethane elastomer subjected to impact loading [J]. PoZym. Eng. Sci,1984,24(11) :851-861.
  • 9Forest C A. Lagrangian analysis with variance esti- mated using the impulse time integraI[J]. Bull Arn Phys Soc, 1991 (36) : 1814-1825.
  • 10R Fowles. Experimental technique and instrumention. Dynamic Response of Materials to Intense Impulsive Loading. P. C. Chou and A. K. Hopkins (eds.) ,1973- 416.

二级参考文献18

  • 1虞德水,赵锋,谭多望,彭其先,方青.JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究[J].爆炸与冲击,2006,26(2):140-144. 被引量:15
  • 2Arienti M, Hung M, et al. A level set approach to Eulerian-Lagrangian coupling[J]. Journal of Computational Physics, 2003, 185:213-251.
  • 3Liu T. G, Khoo B. C, Wang C. W. The ghost fluid method for compressible gas-water simulation[J]. Journal of Computational Physics, 2005,204: 193-221.
  • 4Stewart D S, Bdzil J B. The Shock Dynamics of Stable Multidimensional Detonation[R], T&AM Report. NO.481, Dept. of Theoretical and Applied Mechanics, Univ. of Illinois at Urbana, 1986.
  • 5Aslam T, Bdzil J, Stewart S. Level Set Methods Applied to Modeling Detonation Shock Dynamics [J], J. Comp. Phys, 1996,126:390-409.
  • 6David L K. Multi-Valued Normal Shock Velocity versus - Curvature Relationships for Highly Non-Ideal Explosives [A]. Proceeding of 11^th Symposium (International) on Detonation[C]. Colorado: Office Naval Research, 1997: 181-192.
  • 7Shakeel Abbas Rofi, Huang F L. Validation of DSD Relation for RDX/TNT-Based Cast Explosives for lower Diameters and Dn-K surface equation. Propellants,Explosives, pyrotechnics 33, No 4. 2008.
  • 8Osher S, Sethian J A. Front Propagating with Curvature-Dependent Speed: Algorithms based on Hamilton-Jacobi Formulations [J], J. Comp. Phys, 1988,79: 12-49.
  • 9Osher S, Fedkiw R. Level Set Mmethods and Dynamics Implicit Surface[M]. New York: Springer-Verlag, 2003: 25-69.
  • 10Danping Peng, Barry Merriman, Stanley Osher, et al. A PDE-Based Fast Local Level Set Method[J]. J.Comp.Phys, 1999,155:410-43.

共引文献9

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部