期刊文献+

基于快速方向预测的高分辨率遥感影像压缩 被引量:4

Remote sensing image compression based on fast direction prediction
下载PDF
导出
摘要 针对传统的自适应方向提升小波变换(ADL-DWT)算法在高分辨率遥感影像压缩中计算复杂度过高的问题,提出一种新的基于方向预测的提升小波变换(DP-LWT)算法,实现了高分辨率遥感影像的快速、高效压缩。新算法首先将高分辨率遥感影像分为若干不重叠子块,然后采用梯度算子快速预测遥感影像中每个图像块的最佳提升方向,并沿着最佳预测方向插值完成方向提升小波变换,最后进行多级树集合分裂(SPIHT)编码。实验结果表明,新算法有效削弱了遥感影像各子带中非水平与非垂直方向的高频系数;与传统自适应方向提升小波变换相比,在重建高分辨率遥感影像峰值信噪比基本相同的情况下,有效减少了小波变换中方向预测的计算复杂度。 As traditional Adaptive Direction Lifting based-Discrete Wavelet Transform(ADL-DWT) has higher computational complexity in the compression of high-resolution remote sensing images, this paper proposes a new lifting wavelet transform scheme based on Direction Prediction called DP- LWT to implement the fast and efficient compression of high-resolution remote sensing images. The new algorithm first divides a high-resolution remote sensing image into a number of non-overlapping sub-blocks. Then, the gradient operator is used to predict the best lifting direction of every sub-block in the remote sensing image quickly, and completes the direction lifting wavelet transform by the in- terpolation along the best lifting direction. Finally, the remote sensing image is coded by Set Parti- tioned in Hierarchical Tree(SPIHT). The experimental results show that the new algorithm effective- ly weakens the high-frequency coefficients on the non-horizontal and non-vertical directions of every image subband. Compared with the traditional ADL, the DP-LWT ean effectively reduce the time computational complexity of directional prediction in lifting wavelet transform, and keeps the Peak Signal to Noise Ratio (PSNR) of the reconstructed high-resolution remote sensing image to be the same as that of the ADL basically.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第8期2095-2102,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60602035 No.61071103) 中央高校基本科研业务费专项资金资助项目(No.2012LYB50)
关键词 遥感图像处理 图像压缩 小波变换 自适应方向提升 方向预测 remote sensing image processing image compression wavelet transform adaptive direc-tion lifting direction prediction
  • 相关文献

参考文献14

  • 1TAUBMAN D,ZAKHOR A.Orientation adaptive subband coding of images[J].IEEE Trans.Image Process,1994,3(4):421-437.
  • 2DING W P.Adaptive directional lifting-based wavelet transform for image coding[J].IEEE Trans.Image Process,2007,16 (2):416-427.
  • 3张立保 王鹏飞.基于自适应方向提升整数小波与优化阈值的遥感图像编码.中国激光,2010,37(1):225-228.
  • 4LI B,YANG R,JIANG H X.Remote-sensing image compression using two-dimensional oriented wavelet transform[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):236-250.
  • 5邓家先.基于重要系数提升的遥感图像压缩[J].光学精密工程,2006,14(5):910-916. 被引量:12
  • 6尹传历,李嘉全.基于位平面的嵌入式超光谱图像压缩系统[J].液晶与显示,2012,27(2):245-249. 被引量:11
  • 7孙航,冯强,韩红霞.基于FPGA的红外序列图像动态压缩显示[J].液晶与显示,2011,26(4):551-554. 被引量:4
  • 8TAUBMAN D S,MARCELLIN M W.JPEG2000:Image Compression Fundamentals,Standards and Practice[M].Norwell,MA: Kluwer,2002.
  • 9SWELDENS W.The lifting scheme:A custom-design construction of biorthogonal wavelets[J].Appl.Comput.Harmon.Anal.,1996,3 (2):186-200.
  • 10DAUBECHIES I,SWELDENS W.Factoring wavelet transform into lifting steps[J].Fourier Anal.Appl,1998,4(3):245-267.

二级参考文献29

  • 1刘红,翟林培,高鹰,修吉宏,赵秀影,孙凤英.提升小波变换在图像压缩中的应用[J].光学精密工程,2005,13(z1):201-205. 被引量:7
  • 2Mallat S. A theory for multi-resolution signal decomposition :The wavelet representation[J]. IEEE Trans . Pattern Anal.Mach,1989,11(7):674-693.
  • 3Sweldens W. The lifting scheme :A custom-design construction of bi-orthogonal wavelets[J], Appl. Computer ,Harmon .Anal.1996,3(2):186-200.
  • 4Daubechis I, Sweldens W.Foctoring,Wavelet transform into lifting steps[R].Bell-laboratories ,Lucent Technologies ,Tech Rep,1996.
  • 5Cohen,Daubechies I,Feauveau J.Bi-orthogonal bases of compactly supported wavelets[J].Comm .Pure Appl .Math, 1992,45:485-560.
  • 6Hwang W J,Derin H.Multi-resolution multi-resource progressive image transmission [J].IEEE Trans. On Image Processing,1995,4(8):1128-1139.
  • 7CHRISTOPOULOS C,ASKELF J,LARSSON M.Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard[J].IEEE Signal Processing Letters,2000,7(9):247-249.
  • 8CHRISTOPOULOS C.JPEG2000 verification model 8.0 (Technical description)[M].MediaLab,Ericsson Research,Sweden,July 31,2000.
  • 9CHEN J,LI Y S,WU CH K.A listless minimum zerotree coding algorithm for wavelet image compression[J].Chinese Journal of Electronics,2001,10(2):200-203.
  • 10高阳,李言俊,张科.红外图像的各向异性分段高斯滤波(英文)[J].光子学报,2007,36(6):1167-1171. 被引量:1

共引文献32

同被引文献43

  • 1蒋东方,陈明.一种实时小波降噪算法[J].仪器仪表学报,2004,25(6):781-783. 被引量:33
  • 2陈升来,黄廉卿,郭静寰.基于整型提升小波变换的图像处理及DSP实现[J].光学精密工程,2006,14(3):498-502. 被引量:25
  • 3胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 4钟艳华.JPEG2000中DWT的VLSI结构设计[D].长沙国防科学技术大学,2010.
  • 5Gerhard S, Eric H M. Magnetic bearings : theory, design, and ap- plication to rotating Machinery [ M ]. Berlin: Springer-Verlag, 2009.
  • 6Kyungdae K, Alan P. Homopolar magnetic bearing saturation effects on rotating machinery vibration [ J ]. IEEE Transactions on Magnetics, 2012,48 (6) : 1984-1994.
  • 7MALLAT S. Theory for multiresolution signal decomposition: the wavelet representation[ J ]. IEEE Trans. Pattern Anal. and Machine Intel, 1989,11 (7) :674-693.
  • 8AZAWI S, BOUSSAKTA S, YAKOYLEV A. Performance improve- ment algorithm for colour image compression using DWT and multi- level block truncation coding[ C]//Proc. 7th International Symposi- um on Communication Systems Networks and Digital Signal Process- ing (CSNDSP). [S. l. ] :IEEE Press,2010:811-815.
  • 9AL-AZAWI S, BOUSSAKTA S, YAKOVLEV A. Image compres- sion algorithms using intensity based adaptive equantization coding [J]. American Journal of Engineeringand Applied Sciences, 2011 (4) :504-512.
  • 10AL-AZAWI S, BOUSSAKTA S, YAKOVLEV A. High precision and low power DCT architectures for image compression applications [ C]//Proc. IET Conference on Image Processing (IPR). [S.l. ] : IEEE Press ,2012 : 1-6.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部