期刊文献+

基于贝叶斯估计的Context量化器设计方法 被引量:3

An Algorithm of the Context Quantization Based on the Bayesian Estimation
下载PDF
导出
摘要 介绍了一种基于贝叶斯估计的Context量化器设计方法.通过将自适应码长增量与贝叶斯估计中的先验概率估计进行结合,使得该量化器在不需要先验知识的情况下,既考虑到Context量化本身的特点,又使得编码后信源的自适应码长最短,最终保证了Context量化的自适应性.实验结果表明,该Context量化器设计方法能获得最优量化结果,达到设计目标. In this paper, a new context quantization algorithm based on the Bayesian estimation is proposed and combined the increment of auto-adaptive code length with the prior conditional probability in Bayesian estimation to make this Context quantization without any prior conditions think about its own features and minimize the code length of the source and at last guarentee the Context quantiza- tion auto-adaptation. The result showed that this algorithm of Context quantization can reach the best result and the aim of designment.
出处 《昆明学院学报》 2013年第3期79-82,共4页 Journal of Kunming University
基金 昆明学院校级科学研究基金资助项目(XJL12003)
关键词 贝叶斯估计 Context量化 自适应码长 贝叶斯分类 Bayesian estimation Context quantization auto-adaptive code length Bayesian classification
  • 相关文献

参考文献8

  • 1RISSANEN J. Universal coding, information, prediction, and estima- tion [ J ]. Information Theory, 1984,30 (4) :629 - 636.
  • 2RISSANEN J. A universal data compression system [ J ]. Information Theory,1983,29(5) :656 -664.
  • 3RISSANEN J, FEDER M. A universal finite memory source [ J ]. Infor- mation Theory, 1995,41 (3) :643 - 652.
  • 4CHEN Jian-hua. Context modeling based on context quantization with application in wavelet image coding[ J]. IEEE Transactions on Image Processing,2004,13 ( 1 ) :26 - 32.
  • 5WU Xiao-lin, CHOU P A, XUE Xiao-hui. Minimum conditional entropy context quantization [ J ]. Information Theory,2000,60(2) :43 - 53.
  • 6FORCHHAMMER S,WU X. Context quantization by minimum adap- tive code length [ C ]//Proceedings of IEEE International Symposium on Information Theory,2007:246 - 250.
  • 7李静梅,孙丽华,张巧荣,张春生.一种文本处理中的朴素贝叶斯分类器[J].哈尔滨工程大学学报,2003,24(1):71-74. 被引量:76
  • 8邓桂骞,赵跃龙,刘霖,王元华.一种优化的贝叶斯分类算法[J].计算机测量与控制,2012,20(1):199-201. 被引量:14

二级参考文献17

共引文献87

同被引文献21

  • 1RISSANEN J. A universal data compression system [ J ]. IEEE Trans- actions on Information Theory, 1983,29 (5) :656 - 664.
  • 2CHEN Min,WANG Fu-yan. Context quantization based on the modi- fied K-means clustering [ J]. Advanced Materials Research, 2013, 756:4068 - 4072.
  • 3CHEN Min,CHEN Jian-hua. Affinity propagation for the Context quanti- zation [ J ]. Advanced Materials Research ,2013,791 : 1533 - 1536.
  • 4SHAPIRO J M. Embedded image coding using zerotrees of wavelets coefficients[ J]. IEEE Transactions on Signal Processing, 1993,41 (12) :3445 -3462.
  • 5CHEN J. Context modeling based on context quantization with appli- cation in wavelet image coding [ J ]. IEEE Transactions on Image Pro- cessing,2004,13 ( 1 ) :26 - 32.
  • 6CHEN J H, ZHANG Y F, SHI X L. Image coding based on Wavelet transform and uniform scalar dead zone quantizer[ J]. Signal Process- ing,2006,21 : 562 - 572.
  • 7FORCHHAMMER S, WU X,ANDERSEN J D. Optimal context quanti- zation in lossless compression of image data sequences [ J ]. IEEE Transactions on Image Processing,2004,13 (4) :509 - 517.
  • 8GRUMBACH S, TAHI F. Compression of DNA sequences [ C ]//Data Compression Conference. Utah : Snowbird, 1993 : 340 - 350.
  • 9GRUMBACH S, TAHI F. A new challenge for compression algo- rithms: genetic sequences [ J ]. Information Processing & Manage- ment, 1994,30 (6) :866 - 875.
  • 10CHEN X, KWONG S, LI M. A compression algorithm fur DNA se- quences and its applicationsin genome comparison [ J]. Genome Inform Ser Workshop Genome Inform, 1999,10:51 - 61.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部