期刊文献+

Trilinear equations, Bell polynomials, and resonant solutions 被引量:4

Trilinear equations, Bell polynomials, and resonant solutions
原文传递
导出
摘要 A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and equations are characterized by the Bell polynomials, and the superposition principle is applied to the construction of resonant solutions of exponential waves. Two illustrative examples are made by an algorithm using weights of dependent variables. A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and equations are characterized by the Bell polynomials, and the superposition principle is applied to the construction of resonant solutions of exponential waves. Two illustrative examples are made by an algorithm using weights of dependent variables.
作者 Wen-Xiu MA
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第5期1139-1156,共18页 中国高等学校学术文摘·数学(英文)
关键词 Trilinear differential equation Bell polynomial superposition principle Trilinear differential equation, Bell polynomial, superposition principle
  • 相关文献

参考文献31

  • 1Bell E T. Exponential polynomials. Ann Math, 1934, 35: 258-277.
  • 2Bogdan M M, Kovalev A S. Exact multisoliton solution of one-dimensional Landau-Lifshitz equations for an anisotropic ferromagnet. JETP Lett, 1980, 31(8): 424-427.
  • 3Broer L J F. Approximate equations for long wave equations. Appl Sci Res, 1975, 31(5): 377-395.
  • 4Craik ADD. Prehistory of Faa di Bruno's formula. Amer Math Monthly, 2005, 112: 217-234.
  • 5Delzell C N. A continuous, constructive solution to Hilbert's 17th problem. Invent Math, 1984, 76(3): 365-384.
  • 6Gilson C, Lambert F, Nimmo J, Willox R. On the combinatorics of the Hirota D-operators. Proc R Soc Lond A, 1996, 452: 223-234.
  • 7Grammaticos B, Ramani A, Hietarinta J. Multilinear operators: the natural extension of Hirota's bilinear formalism. Phys Lett A, 1994, 190(1): 65-70.
  • 8Hietarinta J. Hirota's bilinear method and soliton solutions. Phys AUC, 2005, 15(part 1): 31-37.
  • 9Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27: 1192-1194.
  • 10Hirota R. A new form of Backlund transformations and its relation to the inverse scattering problem. Progr Theoret Phys, 1974, 52: 1498-1512.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部