期刊文献+

利用端元坐标的高光谱影像端元提取方法 被引量:3

A Method of Endmember Extraction Based on Coordinate of Endmember
原文传递
导出
摘要 通过研究凸面几何体理论,找出端元在高维空间中的分布特点,将对整幅影像的搜索转变为对影像中DN值最大和最小像元的分析,并将其应用到最大距离法初始端元的提取。考虑到高光谱影像在获取及处理过程中会产生误差,引入了距离阈值概念,计算距离原始端元小于距离阈值像元的平均光谱。实验证明,用平均光谱代替原始端元光谱,显著提高了光谱相似度,并用线性波谱分离,对Cuprite地区的AVIRIS数据进行丰度反演,取得了较好的效果。 By studying the theory of convex geometry,distribu tion characteristics of endmembers in the high-dimensional space is finded out,searching the whole image is changed from to analyzing maximum and minimum of the DN value,and it is applied to the the maximum distance method of the extraction of the initial endmembers.Considering the hyperspectral imag es in the process of acquiring and processing will produce the error,the distance threshold is introduced,and average spec trum of the pixels distance is calculated to original endmember to be less than the distance threshold.Experiments prove that using average spectrum instead of the original endmenber’s spectrum significantly improves the spectral similarity,by ap plying to abundance inverdion of AVIRIS data in Cuprite by Linear Spectral Unmixing,and achieving good result.
出处 《测绘地理信息》 2013年第4期42-44,共3页 Journal of Geomatics
关键词 最大距离法 端元坐标 凸面几何体 混合像元 距离阈值 maximum distance method coordinate of end member convex geometry mixed pixel distance threshold
  • 相关文献

参考文献11

  • 1Keshava N,Mustard J F. Spectral Unmixing[J].IEEE Signal Processing Magazine,2002,(01):44.doi:10.1109/79.974727.
  • 2Theiler J,Lavenier D,Harvey N. Using Blocks of Skewers for Faster Computation of Pixel Purity Index[A].2000.5-10.
  • 3Winter M E. N-FINDR:An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data[J].Proc SPIE Imaging Spectrometry V,1999.266-275.
  • 4Bowles J,Antoniades M,Baumback J M. Use of Filter Vectors in Hyperspectral Data Analysis[J].Proc SPIE Infrared Spacebome Remote Sensing Ⅲ,1995.148-157.
  • 5Bateson C A,Curtiss B. A Tool for Manual Endmember Selection and Spectral Unmixing[A].1993.6.
  • 6Resmini R G. Mineral Mapping with Hyperspectral Digital Imagery Collection Experiment (HYDICE) Sensor Data at Cuprite,Nevada,USA[J].International Journal of Remote Sensing,1997,(07):1553-1570.
  • 7童庆禧;张兵;郑兰芬.高光谱遥感原理、技术与应用[M]北京:高等教育出版社,2006.
  • 8Boardman J W. Automated Spectral Unmimng of AVIRIS Data Using Convex Geometry Concepts:in Summaries[A].Pasadena,CA,USA,1993.
  • 9Ritter G X,Urcid G,Schmalz M S. Autonomous Single-pass Endmember Approximation Using Lattice Auto-associative Memories[J].Neurocomputing,2009,(10):2101-2110.
  • 10李二森,张保明,杨娜,杨靖宇,郭晓刚.非负矩阵分解在高光谱图像解混中的应用探讨[J].测绘通报,2011(3):7-10. 被引量:7

二级参考文献17

  • 1PAATERO P, TAPPER U. Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization ofError Estimates of Data Values [J]. Environmetrics, 1994(5) :111-126.
  • 2LEE D D,SEUNG H S. Unsupervised Learning by Convex and Conic Coding [ J ]. Advances in Neural Information Processing Systems, 1997(9) :515-521.
  • 3LEE D D,SEUNG H S. Learning the Parts of Objects by Nonnegative Matrix Factorization [ J ]. Nature, 1999, 401 (10) ,788-791.
  • 4GILLIS N, GLINEUR F. Using Underapproximations for Sparse Nonnegative Matrix Factorization [ J ]. Pattern Recognition, 2010,43 (4) : 1676-1687.
  • 5MASALMAH Y M. Unsupervised Unmixing of Hyperspectral hnagery Using the Constrained Positive Matrix Factorization[ D]. Puero Rico: The University of PuertoRico Mayaguez Campus, 2007.
  • 6PARRA L C, SAJDA P, DU S. Recovery of Constituent Spectra Using Non-negative Matrix Factorization [ J ]. SPIE Proceedings, 2003,5207( 11 ) :321-331.
  • 7PAURA V P, PIPER J,PLEMMONS R J. Nonnegative Matrix Factorization for Spectral Data Analysis [ J ]. Linear Algebra and Applications, 2006,416 (7) :29-47.
  • 8MIAO L, QI H. Endmember Extraction from Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (3) :765-777.
  • 9ZYMNIS A, KIM S J, SKAF J, et al. Hyperspectral Image Unmixing via Alternating Projected Subgradients [C]//Proceeding of 41st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA: [s. n.], 2007.
  • 10Shimabukuro Y E, et al. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data.IEEE Transaction on Geoscience and Remote Sensing, 1991, 29(1): 16

共引文献24

同被引文献19

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部