摘要
To reduce oil consumption during firing-up and partial-load operation, a tiny-oil ignition burner has been recommended. Through reacting-flow experiments performed on a full-scale experimental setup, the influence of different oil flow rates on bituminous coal combustion as well as flow rates without coal feed was analyzed. The ignition burner is identical to that normally used in an 800 MWe utility boiler. Under operating conditions with flow rates of 50, 100, and 150kg/h, gas temperature distribu- tions were measured in the burner. At the equivalent measuring points at the exits of the first and second combustion chambers, these distributions remained almost unchanged under a constant coal feed rate of 4t/h. However on the burner centerline, distributions increased slightly with increasing flow rate. Different gas concentrations were measured at the center of the burner exit. For instance, the 02 concentration at the burner exit varied from 0.01% to 0.31% whereas CO concentrations were more than 10000 ppm. At the same coal feed rate of 4 t/h, burner resistances are 480, 600, and 740 Pa for oil flow rates of 50, 100, and 150 kg/h, respectively.
To reduce oil consumption during firing-up and partial-load operation, a tiny-oil ignition burner has been recommended. Through reacting-flow experiments performed on a full-scale experimental setup, the influence of different oil flow rates on bituminous coal combustion as well as flow rates without coal feed was analyzed. The ignition burner is identical to that normally used in an 800 MWe utility boiler. Under operating conditions with flow rates of 50, 100, and 150kg/h, gas temperature distribu- tions were measured in the burner. At the equivalent measuring points at the exits of the first and second combustion chambers, these distributions remained almost unchanged under a constant coal feed rate of 4t/h. However on the burner centerline, distributions increased slightly with increasing flow rate. Different gas concentrations were measured at the center of the burner exit. For instance, the 02 concentration at the burner exit varied from 0.01% to 0.31% whereas CO concentrations were more than 10000 ppm. At the same coal feed rate of 4 t/h, burner resistances are 480, 600, and 740 Pa for oil flow rates of 50, 100, and 150 kg/h, respectively.
基金
This work was supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).