期刊文献+

一种简化的BP神经网络图像插值算法 被引量:1

A Simplified Image De-interlacing Algorithm in Back Propagation Neural Network
下载PDF
导出
摘要 为进一步提高图像插值质量,丰富非线性图像插值算法研究,提出一种简化的神经网络插值算法。利用前向反馈神经网络(BP-NN)构造最佳的图像插值模型,通过2组实验确定该模型的BP网络最佳拓扑结构、最佳采样模型和采样点数量,并定量描述每组模型的耗时。实验结果表明,对512×512像素图像采用BP-NN训练点数量为50 000、拓扑结构为8-16-1的参数插值时,该算法平均插值时间约为0.7 s,且其峰值信噪比比线性均值方法平均高1 dB^2 dB,能够得到更佳的视觉感受。 The objective of this paper is to improve the quality of image interpolation, enrich non-linear image interpolation algorithm. This paper presents a simplified neural network interpolation algorithm, in which the Back Propagation Neural Network(BP-NN) is adopted to construct the best interpolation model. Two sets of experiments determine the best topology of the BP network's model, the optimal sampling model, the number of sampling points, and describe the time-consuming of each group model quantitatively. Experimental results show that a 512-512 pixel image interpolation using BP-NN can obtain the Peak Signal to Noise Radio(PSNR) ldB-2 Db higher than Linear Average(LA) method, while the number of pixels in training sets is 50 000 with the topology of 8-16-1. Therefore, the proposed algorithm performs better visual quality.
出处 《计算机工程》 CAS CSCD 2013年第9期263-266,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61262088 61063042 61363083) 新疆自然科学基金资助项目(2011211A011 2013211A011) 新疆高校科研计划基金资助项目(XJEDU2012110) 新疆大学博士启动基金资助项目(BS100128)
关键词 前向反馈神经网络 图像插值 峰值信噪比 采点模式 隐藏层神经元 线性插值 Back Propagation Neural Network(BP-NN) image de-interlacing Peak Signal to Noise Radio(PSNR) sampling mode hidden layer neuron linear interpolation
  • 相关文献

参考文献13

  • 1Li Renxiang, Zeng Bing, Liou M L. Reliable Motion De- tection/Compensation for Interlaced Sequences and Its Application: to Deinterlacing[J]. I:FE Trans. on Circuits and System for Video Technology, 2000, 10(1): 23-29.
  • 2Beong T, Kim Y, Sohn K, et al. Deinterlacing with Selective Motion Compensation[J]. Optical Engineering, 2006, 45(7).
  • 3Zeng Bing, Venetsanopoulos A N. A Comparative Study of Several Nonlinear Image Interpolation Schemes[C]//Proc. of International Society for Optical Engineering on Visual Communications and Image Processing. [S. I.]: SPIE Press, 1992:21-29.
  • 4Seo G, Choi H, Lee C. Efficient Implementation of Neural Network Deinterlacing[C]//Proc. of International Society for Optical Engineering on Image Processing: Algorithms and Systems. [S. I.]: SPIE Press, 2009.
  • 5李青峰,胡访宇.利用BP神经网络实现监控图像盲复原[J].计算机仿真,2009,26(5):223-226. 被引量:5
  • 6席旭刚,罗志增.用Hopfield神经网络实现触觉图像恢复[J].仪器仪表学报,2009,30(10):2192-2196. 被引量:5
  • 7贺可鑫,何小海,陶青川,王宇.基于RBF神经网络的COSM图像复原算法[J].计算机应用,2009,29(1):78-80. 被引量:6
  • 8许亚娟,顾济华,周皓,王小彬.基于BP神经网络的图像插值算法研究[J].微计算机信息,2010,26(10):125-126. 被引量:3
  • 9Plaziac N. linage Interpolation Using Neural Networks[J]. IEEE Trans. on Image Procession, 1999, 8(11): 1647-1651.
  • 10Woo D H. Deinterlacing Based on Modularization by Local Frequency Characteristics[J]. Optical Engineering, 2006, 45(2).

二级参考文献27

共引文献20

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部