期刊文献+

On the Indecomposable Modules of U_q(sl(2)) Constructed via Ore-extension

On the Indecomposable Modules of U_q(sl(2)) Constructed via Ore-extension
原文传递
导出
摘要 Let A be a subalgebra of uq(sl(2)) generated by K, K-1 and F and A^δ be a subalgebra of b/q(sl(2)) generated by K, K-1 (and also Fd if q is a primitive d-th root of unity with d an odd number). Given an Aδ-module M, a/gq(s/(2))-module A A M is constructed via the iterated Ore extension of Uq(S/(2)) in a unified framework for any q. Then all the submodules of A δA5 M are determined for a fixed finite-dimensional indecomposable Aδ-module .M. It turns out that for some indecomposable A^-module M, the 5/q(sl(2))-module A @A M is indecomposable, which is not in the BGG-categories associated with quantum groups in general. Let A be a subalgebra of uq(sl(2)) generated by K, K-1 and F and A^δ be a subalgebra of b/q(sl(2)) generated by K, K-1 (and also Fd if q is a primitive d-th root of unity with d an odd number). Given an Aδ-module M, a/gq(s/(2))-module A A M is constructed via the iterated Ore extension of Uq(S/(2)) in a unified framework for any q. Then all the submodules of A δA5 M are determined for a fixed finite-dimensional indecomposable Aδ-module .M. It turns out that for some indecomposable A^-module M, the 5/q(sl(2))-module A @A M is indecomposable, which is not in the BGG-categories associated with quantum groups in general.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第7期1391-1400,共10页 数学学报(英文版)
基金 Supported by National Natural Foundation of China (Grant No. 11171291) Doctorate Foundation (Grant No. 200811170001) Ministry of Education of China
关键词 Ore-extension indecomposable module quantum group Ore-extension, indecomposable module, quantum group
  • 相关文献

参考文献13

  • 1Andersen, H. H., Mazorchuk, V.: Category O for quantum groups. ArXiv:l105.5500v2 [math.RT] (2011).
  • 2Concini, C. D., Kac, V. C.: Representations of quantum groups at roots of 1. Progress in Mathematics, 92, 471-506 (1990).
  • 3Erik, D., Martin H.: On the representation ring of the polynomial algebra over a perfect field. Math. Z., 265, 601 615 (2010).
  • 4Kassel, C.: Quantum Groups, Springer, Berlin-Heidelberg-New York, 1995.
  • 5Li, L. B.: Constructing indecomposable representations over quantum group 14q(sl(2)). Arch. Math., 80, 578-585 (2003).
  • 6Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math., 70, 237-249 (1988).
  • 7Lusztig, G.: Finite-dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Amer. Math. Soc., 3, 257-296 (1990).
  • 8Reshetikhin, N. Y., Turaev, V. G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103, 547-597 (1991).
  • 9Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra. Commun. Math. Phys., 117, 581-593 (1988).
  • 10Vyjayanthi, C., Andrew, P.: A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部