期刊文献+

Global smoothing for the periodic Benjamin equation in low-regularity spaces 被引量:1

Global smoothing for the periodic Benjamin equation in low-regularity spaces
原文传递
导出
摘要 This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation. It is shown that for Hs(T) initial data with 8 〉 -1/2 and for any s 〈 s1〈 min{s + 1,3s + 1}, the difference of the evolution with the linear evolution is in Hs1 (T) for all times, with at most polynomial growing HS1 norm. Unlike Korteweg-de Vries (KdV) equation, there are less symmetries of the Benjamin system, especially for the resonant function. The new ingredient is that we need to deal with some new difficulties that are caused by the lack of symmetries. This paper is intended as an attempt to set up the global smoothing for the periodic Benjamin equation.It is shown that for Hs(T) initial data with s >-1/2 and for any s < s1< min{s+1,3s+1},the diference of the evolution with the linear evolution is in Hs1(T) for all times,with at most polynomial growing Hs1 norm.Unlike Korteweg-de Vries(KdV) equation,there are less symmetries of the Benjamin system,especially for the resonant function.The new ingredient is that we need to deal with some new difculties that are caused by the lack of symmetries.
出处 《Science China Mathematics》 SCIE 2013年第10期2051-2061,共11页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11171026 and 11271175) National Natural Science Foundation of Shandong Province(Grant No.ZR2012AQ026)
关键词 Benjamin equation WELL-POSEDNESS global smoothing Benjamin方程 空间平滑 周期性 德弗里斯 对称性 多项式 KdV 函数
  • 相关文献

参考文献37

  • 1Angulo J. Existence and stability of solitary wave solution of the Benjamin equation. J Differential Equations, 1999,152: 136-159.
  • 2Babin A, Ilyin A, Titi E. On the regularization mechanism for the periodic Korteweg-de Vries equation. Comm Pure Appl Math, 2011, 64: 591-648.
  • 3Bejenaru I, Tao T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrdinger equation. J Funct Anal, 2006, 233: 228-259.
  • 4Benjamin B. A new kind of solitary wave. J Fluid Mech, 1992, 245: 401-411.
  • 5Bourgain J. Fourier retsriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I. Schr?dinger equations; II. The KdV-equation. Geom Funct Anal, 1993, 3: 107-156;209-262.
  • 6Bourgain J. Periodic Korteweg de Vries equation with measures as initial data. Selecta Math (NS), 1997, 3: 115-159.
  • 7Chen H, Bona J. Existence and asymptotic properties of solitary wave solutions of the Benjamin-type equations. Adv Difference Equ, 1998, 3: 51-84.
  • 8Chen W, Guo Z. Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation. J Anal Math,2011, 114: 121-156.
  • 9Chen W, Guo Z, Xiao J. Sharp well-posedness for the Benjamin equation. Nonlinear Anal, 2011, 74: 6209-6230.
  • 10Chen W, Li J, Miao C, et al. Low regularity solutions of two fifth-order KdV type equations. J Anal Math, 2009, 107:221-238.

二级参考文献121

  • 1Liu ShaoWei,Cheng Yi,He JingSong.The determinant representation of the gauge transformation for the discrete KP hierarchy[J].Science China Mathematics,2010,53(5):158-169. 被引量:6
  • 2ZHU ShiHui,ZHANG Jian,LI XiaoGuang.Limiting profile of blow-up solutions for the Gross-Pitaevskii equation[J].Science China Mathematics,2009,52(5):1017-1030. 被引量:4
  • 3Angulo J. Existence and stability of solitary wave solution of the Benjamin equation. J Differential Equations, 1999,152: 136-159.
  • 4Babin A, Ilyin A, Titi E. On the regularization mechanism for the periodic Korteweg-de Vries equation. Comm Pure Appl Math, 2011, 64: 591-648.
  • 5Bejenaru I, Tao T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrdinger equation. J Funct Anal, 2006, 233: 228-259.
  • 6Benjamin B. A new kind of solitary wave. J Fluid Mech, 1992, 245: 401-411.
  • 7Bourgain J. Fourier retsriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I. Schr?dinger equations; II. The KdV-equation. Geom Funct Anal, 1993, 3: 107-156;209-262.
  • 8Bourgain J. Periodic Korteweg de Vries equation with measures as initial data. Selecta Math (NS), 1997, 3: 115-159.
  • 9Chen H, Bona J. Existence and asymptotic properties of solitary wave solutions of the Benjamin-type equations. Adv Difference Equ, 1998, 3: 51-84.
  • 10Chen W, Guo Z. Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation. J Anal Math,2011, 114: 121-156.

共引文献3

同被引文献36

  • 1ZHU ShiHui,ZHANG Jian,LI XiaoGuang.Limiting profile of blow-up solutions for the Gross-Pitaevskii equation[J].Science China Mathematics,2009,52(5):1017-1030. 被引量:4
  • 2Angulo J. Existence and stability of solitary wave solution of the Benjamin equation. J Differential Equations, 1999,152: 136-159.
  • 3Babin A, Ilyin A, Titi E. On the regularization mechanism for the periodic Korteweg-de Vries equation. Comm Pure Appl Math, 2011, 64: 591-648.
  • 4Bejenaru I, Tao T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrdinger equation. J Funct Anal, 2006, 233: 228-259.
  • 5Benjamin B. A new kind of solitary wave. J Fluid Mech, 1992, 245: 401-411.
  • 6Bourgain J. Fourier retsriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I. Schr?dinger equations; II. The KdV-equation. Geom Funct Anal, 1993, 3: 107-156;209-262.
  • 7Bourgain J. Periodic Korteweg de Vries equation with measures as initial data. Selecta Math (NS), 1997, 3: 115-159.
  • 8Chen H, Bona J. Existence and asymptotic properties of solitary wave solutions of the Benjamin-type equations. Adv Difference Equ, 1998, 3: 51-84.
  • 9Chen W, Guo Z. Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation. J Anal Math,2011, 114: 121-156.
  • 10Chen W, Guo Z, Xiao J. Sharp well-posedness for the Benjamin equation. Nonlinear Anal, 2011, 74: 6209-6230.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部