期刊文献+

基于支持向量机的结构损伤识别分析 被引量:2

APPLICATION OF SUPPORT VECTOR MACHINE TO DAMAGE DETECTION
下载PDF
导出
摘要 支持向量机是一种基于统计学习理论的机器学习方法,具有很好的回归和预测性能。本文提出了一种基于支持向量机回归的结构损伤识别方法,采用柔度作为支持向量机的输入向量,并以两跨连续梁为例进行仿真计算。结果表明,本文方法可以较好的从单点损伤情况预测出两点损伤情况的损伤位置和损伤程度。 Support Vector Machine(SVM) is a machine learning algorithm based on statistical learn- ing theory with the good regression and generalization ability. A method for structural damage identifica- tion based on SVM regression is proposed in this paper, and the flexibility matrix was used as the SVM input vectors in an emulational example of two - span beam. The results show that the proposed method performs a good ability of predicting the location and maanitude of damages.
作者 周述美 杨跃
出处 《低温建筑技术》 2013年第9期45-47,共3页 Low Temperature Architecture Technology
关键词 损伤识别 支持向量机 柔度矩阵 damage identification support vector machine flexibility matrix
  • 相关文献

参考文献5

  • 1V Vapnik.统计学习理论的本质[M].张学工(译).北京:清华大学出版社.2000.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 3S R Gunn. Support vector machines for classification and regres- sion [R]. Image Speech and Intelligent Systems Research Group, University of Southampton : Technical Report ISIS - 1 - 98, 1998.
  • 4A K Pandey, M Biswas. Damage detection in structures using changes in flexibility [ J]. Journal of Sound and Vibration. 1994, 169(1) : 3 -17.
  • 5M Shimada,A Mita. Damage assessment of bending structures u- sing support vector machines[ Z]. Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Me- chanical and Aerospace, San Diego, California USA, March 2005, 923-930.

二级参考文献1

共引文献2277

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部