期刊文献+

一种新的证据K-NN数据分类算法 被引量:4

A New Evidential K-Nearest Neighbors Data Classification Method
下载PDF
导出
摘要 K近邻分类算法已被广泛应用于模式识别中。为了有效处理识别问题中的不确定信息并提高数据分类精度,提出了一种新的证据K-NN(NEK-NN)分类算法。首先从总的训练集中随机重复采样来构造多个训练样本子集。在每个训练子集中,利用目标数据与其各个近邻的距离分别构造基本置信指派,并根据K个近邻数据在每个类别中的数目来对构造的置信指派进行加权。然后,利用DS规则对加权证据融合。根据每个训练子集下融合结果的算术平均值来判断目标的类别属性。通过模拟数据集和真实数据集的实验,将NEK-NN算法与其他几种常见的方法做了对比分析,结果表明NEK-NN算法能够有效地提高分类的精度。 The K-Nearest Neighbor (K-NN) rule has been widely used in the pattern recognition field. In order to effectively deal with the uncertain information and to improve the accuracy of classification, a new evidential K-Nearest Neighbors (NEK-NN) data classification method is proposed. Several training subsets are resampled from the whole training set. In each subset, the basic belief assignments (bba's) are determined using the distance between the object and its K Nearest Neighbors, and then the K bba's are discounted according to the number of the K Nearest Neighbors in each class. Finally the discounted bba's are combined using DS rule, and the mean of these combination results in each training subset is used for the classification of the object. Several experiments are given to test effectiveness of NEK-NN with respect to some other methods. The results indicate that NEK-NN can effectively improve the classification accuracy.
出处 《火力与指挥控制》 CSCD 北大核心 2013年第9期58-61,共4页 Fire Control & Command Control
基金 国家自然科学基金(61135001) 国家自然科学基金资助项目(61075029)
关键词 证据推理 K—NN 置信函数 数据分类 DST evidence theory, K-NN, belief functions, data classification, DST
  • 相关文献

参考文献11

二级参考文献46

  • 1黄金,梁彦,程咏梅,潘泉,胡劲文.基于序列图像的自动目标识别算法[J].航空学报,2006,27(1):87-93. 被引量:19
  • 2叶清,吴晓平,宋业新.基于权重系数与冲突概率重新分配的证据合成方法[J].系统工程与电子技术,2006,28(7):1014-1016. 被引量:33
  • 3SHAFER G A. Mathematical Theory of Evidence[M]. Princeton, New Jersey: Princeton University Press, 1976.
  • 4YAGER R R. On the dempster sharer framework and new combination rules[J]. Information System, 1989, 41(2): 93 - 137.
  • 5SMARANDACHE F, DEZERT J. Proportional conflict redistribution rules for information fusion[M]//Advances and Applications of DSmT for Information Fusion (Collected works), Florentin Smarandache and Jean Dezert, Editors, Rehoboth: American Research Press, 2006,2:3 - 68.
  • 6MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1): 1 - 9.
  • 7DENG Y, SHI W K, ZHU Z E et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems, 2004, 38(3): 489 - 493.
  • 8BENJAMIN Q, MASSON M H, DENOEUX T. Refined classifier combination using belief functions[C]// Proceedings of the 11th International Conference on Information Fusion (FUSION '08). Piseataway: IEEE Press, 2008, 7:1 - 7.
  • 9JOUSSELME A L, GRENIER D, BOSSE E. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2): 91 - 101.
  • 10Shafer G.A mathematical theory of evidence[M].Princeton,N J:Princeton University Press,1976.

共引文献85

同被引文献46

  • 1纪正飚,王吉林,赵力.基于模糊K近邻的语音情感识别[J].微电子学与计算机,2015,32(3):59-62. 被引量:10
  • 2张葛祥,荣海娜,金炜东.支持向量机在雷达辐射源信号识别中的应用[J].西南交通大学学报,2006,41(1):25-30. 被引量:31
  • 3刘先康,梁菁,任杰,等.修正最近邻模糊分类算法在舰船目标识别中的应用.计算机工程与应用,2010;46(9):228—231.
  • 4Denoeux T. A K-nearest neighbor classification rule based on Demp- ster-Shafer theory. IEEE Trans on Systems, Man and Cybernetics, 1995; 25(05) : 804-813.
  • 5Smarandache F, Dezert J. Advances and applications of DSmT for information fusion. Rehoboth: American Research Press, 2004.
  • 6Smets P. The transferable belief model. Artificial Intelligence, 1994;66(2) :191-243.
  • 7Smarandache F, Dezert J. Advances and applications of DSmT forinformation fusion. Rehoboth ; American Research Press, 2006.
  • 8Smarandaehe F, Dezert J. Advances and applications of DSmT for information fusion. Rehoboth : American Research Press ,2009.
  • 9刘先康,梁菁,任杰,等.修正最近邻模糊分类算法在舰船目标识别中的应用[J].计算机工程与应用,2010,46(9):228-231.
  • 10SMARANDACHE F, DEZERT J. Advances and Applications of DSmT for Information Fusion 19[M]. Rehoboth: American Re- search Press, 2004.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部