期刊文献+

一种改进的SIFT特征点检测方法 被引量:8

AN IMPROVED SIFT FEATURE POINT DETECTION METHOD
下载PDF
导出
摘要 尺度不变特征变换(SIFT)图像匹配算法采用高斯差分算子(DoG)进行特征点检测,计算上使用相邻尺度高斯平滑后图像相减。在实践中,检测出的特征点遍布整个图像,造成后续计算量大且误配率高,降低了SIFT算法的实时性。针对以上问题,采用一种优化后的区域检测方法对SIFT特征点检测进行改进。首先利用优化后的区域检测方法检测出目标物体,然后运用DoG算子提取特征点,使特征点集中在目标物体上,从而简化计算,提高SIFT算法的实时性。最后,给出改进算法的实验结果和应用前景。 Difference of Gaussians operator is used in SIFT image matching algorithm to detect feature points. In calculation the adjacent scales Gaussian smoothed image subtraction is used. In practices, the feature points detected are scattered on whole image and that leads to large amount of subsequent calculations and high mismatching rate, arid the real-time property of SIFT algorithm is reduced. To solve the above problems, an optimised region detection method is adopted to improve the feature points detection of SIFT algorithm. First, the target object is detected by an optimised region detection method. Then, the feature points are extracted by Difference of Gaussians operator. It makes the feature points concentrated on the target object, so that simplifies the calculations and improves the real-time property of SIFT algorithm. Finally, the experimental results and application prospects of the improved algorithm are given.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第9期147-150,共4页 Computer Applications and Software
基金 四川省教育厅项目(12ZB070) 绵阳师范学院科研项目(2012A18) 绵阳师范学院自然科学资助项目(2013A12)
关键词 尺度不变特征变换 图像匹配 特征点检测 区域检测 实时性 Scale invariant feature transform(SIFT) Image matching Feature point detection Region detection Real-time property
  • 相关文献

参考文献6

  • 1Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.
  • 2Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descrip-tors [J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2005, 27(10) : 1615 -1630.
  • 3Bay H, Tuytelaars T, Gool L V. SURF : Speeded Up Robust Features[C]//Ninth European Conference on Computer Vision, 2006. Graz:ECCV, 2006:404-417.
  • 4Yan Ke, Sukthankar R. PCA-SIFT : A More Distinctive Repre-senta-tion for Local Image Descriptors [ C] //2004 IEEE Computer SocietyConference on Computer Vision and Pattern Recognition, Washington :IEEE Computer Society, 2004:506 -513.
  • 5Xiaodi Hou, Liqing Zhang. Saliency Detection : A Spectral ResidualApproach [ C] //2007 IEEE Computer Society Conference on ComputerVision and Pattern Recognition,Minneapolis : IEEE Computer Society,2007:1 -8. '.
  • 6赵品,周越.一种基于区域检测特征描述子的静态图像拼接算法[J].计算机应用与软件,2010,27(7):242-244. 被引量:2

二级参考文献8

  • 1Thaddeus Beier,Shawn Neely.Feature-based image metamorphosis[C]//Proceeding of the 19th annual conference on computer graphics andinteractive techniques,1992:35-24.
  • 2Szeliski R,Shun H Y.Creating full view panoramic image mosaics and environment maps[C]//Computer graphics(SIGGRAPH97),1997:251-258.
  • 3Reddy B S,Chatterji B N.An FFT-based technique for translation,rotation,and scaling-invariant image registration[J].IEEE Transactions on Image Processing,1996,8(5):1266-1271.
  • 4Xiaodi Hou,Liqing Zhang:Saliency Detection:A Spectral Residual Approach.In:CVPR,2007:18.
  • 5Lowe D G.Distinctive Image Features from Scale-Invariant Keypoints.International Journal of Computer Vision,2004,60(2):91-110.
  • 6Jian Liang,Dementhon D,Doermann D.Camera-Based Document Image Mosaicing.Pattern Recognition,2006.ICPR 2006.18th International Conference on,2006,2:476-479.
  • 7Richard Hartley and Andrew Zisserman.Multiple View Geometry.CVPR June,1999.
  • 8Szeliski R.Video mosaic for virtual environments[J].IEEE Computer Graphics and Application,1996,16(2):22-30.

共引文献1

同被引文献90

  • 1吕尧新,刘志强,朱祥华.基于相位谱分析技术的图像特征提取研究[J].计算机应用研究,2005,22(1):258-260. 被引量:4
  • 2汪华琴,谈国新,钱小红,朱海燕.一种基于曲率尺度空间的自适应角点检测方法[J].计算技术与自动化,2007,26(2):123-127. 被引量:10
  • 3KrystianMikolajczyk, CordeliaSchmid. A performance evaluation of local descriptors [ J ]. IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27 (10) : 1615 - 1630.
  • 4王新建,徐海波.计算机视觉的应用研究[M].西安:西安交通大学,2005.
  • 5David G Lowe. D istinctivelmage features from scale - invariant keypoints [ J]. International Journal of Computer Vision, 2004,60 (2) : 91 - 110.
  • 6Ives Rey Otero,Mauricio Delbracio. The Anatomy of the SIFT Method[ C]. Image Processing On Line,2012.
  • 7QUDDUS A, FAHMY M M. An improved wavelet-based cor- ner detection technique[ C]//Proceedings of the IEEE In- ternational Conference on Acoustics, Speech, and Signal Processing. Phoenix, USA: IEEE, 1999, 6: 3213-3216.
  • 8HARRIS C, STEPHENS M. A combined corner and edge detector[ C]//Proceedings of the 4th Alvey Vision Confer- ence. Manchester, UK: Blackwel, 1988: 147-151.
  • 9SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of in- terest point detectors [ J ]. International journal of computer vision, 2000,37(2) : 151-172.
  • 10MIKOLAJCZYK K, SCHMID C. Scale & affine invariant in- terest point detectors[ J]. International journal of computer vision, 2004, 60(1): 63-86.

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部