期刊文献+

压缩感知技术及其在MRI上的应用 被引量:31

Compressed sensing technology and its application in MRI
下载PDF
导出
摘要 压缩感知是基于应用数学的一种创新的信号获取及处理理论,其原理是通过对所采集的信号进行适当域变换得到可压缩信号,直接采集压缩后的信号并利用重构算法实现快速优质信号重建。运用该技术成像不仅具有出色的时间分辨率优势,同时具有满意的空间分辨率,因此近年来其在医学成像领域的应用逐渐成为研究热点。作者在阐述压缩感知理论基本原理的基础上,进一步对其在MRI上的研究现状和发展前景进行综述。 Compressed sensing is an innovative theory of signal acquisition and processing based on the areas of applied mathematics.It works by using the mathematical algorithm to make an appropriate domain transformation for the collected signals and changing them into sparse or compressible signals.Afterwards,gathering the compressed signals directly to reconstruct the original signals at speedy,high quality by the method of the reconstruction algorithm.Due to its excellent temporal resolution advantages and with satisfactory temporal resolution,compressed sensing has become a research focus in the field of medical imaging.This article mainly elaborates in the basic theory of compressed sensing,its application in MRI and prospects for development.
出处 《磁共振成像》 CAS CSCD 2013年第4期314-320,共7页 Chinese Journal of Magnetic Resonance Imaging
基金 国家自然科学基金重点项目(编号:30930027)
关键词 压缩感知 FOURIER变换 磁共振成像 Compressed Sensing Fourier transformation Magnetic resonance imaging
  • 相关文献

参考文献32

  • 1Shannon CE. Communication in the presence of noise. Proceedings IEEE, 1949, 37: 10-21.
  • 2Cand6s EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions, 2006, 52(2): 489-509.
  • 3Donoho D L. Compressed sensing. Information Theory, IEEE Transactions, 2006, 52(4): 1289-1306.
  • 4Baraniuk RG. Compressive sensing [lecture notes]. Signal Processing Magazine IEEE, 2007, 24(4): 118-121.
  • 5Cand6s EJ, Wakin MB. An introduction to compressive sampling. Signal Processing Magazine IEEE, 2008, 25(2): 21-30.
  • 6Kutyniok G. Compressed sensing: theory and applications, arXiv, 2012: 1203, 3815.
  • 7杨晓兰,朱永贵,丛佳,刘平,李雪萍.基于压缩感知的核磁共振图像重建的Bregman方法[J].中国传媒大学学报(自然科学版),2012,19(4):18-26. 被引量:3
  • 8冯晓源,刘含秋.功能磁共振成像在中国的研究现状[J].中国医学计算机成像杂志,2004,10(5):292-298. 被引量:19
  • 9Jung H, Ye JC. Performance evaluation of accelerated functional MRI acquisition using compressed sensing. Biomedical Imaging: from nano to macro, 2009. IEEE, 2009: 702-705.
  • 10Vaswani N. Kalman filtered compressed sensing. Image Processing, 2008. IEEE, 2008: 893-896.

二级参考文献88

共引文献20

同被引文献298

  • 1张晓玲,沈兰荪.一种基于自适应预测的医学图像高效无损压缩方法[J].电子学报,2001,29(z1):1914-1916. 被引量:5
  • 2王超.基于压缩感知的贪婪迭代重构算法[J].数据采集与处理,2012,27(S2):298-303. 被引量:12
  • 3邱力军,张景波,尤富生,杨滨.基于小波变换的医学图像压缩技术研究[J].医疗卫生装备,2006,27(1):5-6. 被引量:3
  • 4赵丽红,田亚男,沙永刚,李景华.DPCM与小波变换结合的医学图像无损压缩[J].东北大学学报(自然科学版),2007,28(10):1454-1457. 被引量:5
  • 5Donoho DL. Compressed sensing [ J]. IEEE Trans lnflrm Theory, 2006, 52(4) :1289 - 1306.
  • 6Mallat S, Zhang Z. Matching pursuits with time - ti'equen y dictionaries[ J ]. IEEE Trans Signal Proc, 1993,41 ( 12 ) : 3397 - 3415.
  • 7Tropp JA, Gilbert AC. Signal recovery from random meas- urements via orthugonal matching pursuit [ J ]. IEEE Trans Intorm Theory , 2007,53 (12) :4655 - 4666.
  • 8Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal Matching Pursuit [ J ]. Foundat Computational Mathe, 2009,9 ( 3 ) : 317 - 334.
  • 9Donuho DL,Tsaig Y, Drori 1, et al. Sparse solution of un- derdetermined linear equations by stagewise orthogonal matching pursuit [ R]. Stanford Statistics Technical l/eporl 20O6.
  • 10Needell D, Tropp JA. CoSaMP: lterative signal recovery from incomplete and inaccurate samples [ J ]. Communi ACM, 2010,53(12) :93 - 100.

引证文献31

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部