期刊文献+

风场干扰下基于一致性卡尔曼滤波的UAV编队控制算法 被引量:6

UAV Control Algorithm Based on Consensus Kalman Filtering Under Wind Interference
下载PDF
导出
摘要 针对风场干扰下多无人机(UAV)编队的控制问题,提出一种基于一致性卡尔曼滤波的多无人机编队控制算法。根据一致性卡尔曼滤波算法,测量每架无人机的风场干扰误差,预测控制编队中各机的相对位置;设置编队的中心关键点,并利用总卡尔曼滤波器调整其位置,由此实现了一致性卡尔曼滤波算法与航迹修正相结合解决风场干扰下多无人机编队的控制问题;并将该算法应用到轨迹跟踪问题,从而实现编队对复杂航迹的实时跟踪。仿真结果表明,文中提出的算法具有很好的灵活性、鲁棒性、可靠性和可伸缩性。 With respect to the problem of controlling unmanned aerial vehicles (UAVs) formation under wind interference, the UAV formation control algorithm based on consensus Kalman filtering algorithm was proposed. Firstly the wind field measurement errors of each UAV can be estimated and the relative position of each UAV in the formation can be predicted by using consensus-based Kalman filtering algorithm. Secondly the formation center is set and it's position can be modified by the center Kalman filter. Then the control algorithm is achieved by combining the consensus-based Kalman filtering algorithm and the trajectory correction to solve the problem of UAVs formation under wind interference. At last, this algorithm is applied into the trajectory tracking problem and it can realized the timely tracking of complex formation trajectory. The simulation was computed to show the flexibility, robustness, reliability and scalability of the mentioned algorithm.
作者 陈侠 鹿振宇
出处 《兵工自动化》 2013年第10期28-32,共5页 Ordnance Industry Automation
基金 国家自然科学基金(61074159) 辽宁省自然科学基金资助项目(20092053)
关键词 风场干扰 一致性卡尔曼滤波 航迹修正 UAV编队 wind interference consensus-based Kalman filtering track correction UAV formation
  • 相关文献

参考文献15

二级参考文献102

  • 1屈耀红,邢小军,闫建国,潘泉.联合卡尔曼滤波在无人机组合导航中的应用[J].飞行力学,2004,22(4):69-72. 被引量:3
  • 2徐田来,游文虎,崔平远.基于模糊自适应卡尔曼滤波的INS/GPS组合导航系统算法研究[J].宇航学报,2005,26(5):571-575. 被引量:59
  • 3马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 4王玲,刘云辉,万建伟,邵金鑫.基于相对方位的多机器人合作定位算法[J].传感技术学报,2007,20(4):794-799. 被引量:25
  • 5Etkin B. Turbulent wind and its effect on flight [J]. Journal of Aircratt (S0021-8669), 1984, 21(3): 175-182.
  • 6Malcolm J Abzug. Computational Flight Dynamics [M]. USA: AIAA Educational Series (S0348-7180), 1998.
  • 7Carlson N A, Berarducci M P. Federated Kalman Filter Simulation Results [J]. Navigation (S0028-1522), 1994, 41(3): 297-321.
  • 8Cheng B H, Hudson R E, Lorenzelli F, et al. Distributed Gauss- Newton method for node localization in wireless sensor networks[C]//Proceedings of the IEEE 6th Workshodp on Signal Processing Advances in Wireless Communications. Piscataway, NJ, USA: IEEE, 2005: 915-919.
  • 9Xiao L, Boyd S, Lall S. A space-time diffusion scheme for peer- to-peer least-squares estimation[C]//The 5th International Conference on Information Processing in Sensor Networks. New York, NJ, USA: ACM, 2006: 168-176.
  • 10Rabbat M, Nowak R. Distributed optimization in sensor networks[C]//The 3rd International Symposium on Information Processing in Sensor Networks. New York, NJ, USA: ACM, 2004: 20-27.

共引文献92

同被引文献68

引证文献6

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部