期刊文献+

一类食物链模型的Fold-Hopf分支现象分析 被引量:2

Fold-Hopf Bifurcation Analysis on a Food Chain Model
下载PDF
导出
摘要 对一类Gause型食物链模型,用多项式理论分析了共存平衡点处线性化系统特征方程特征根的分布,给出了产生Fold-Hopf分支的条件.结果表明:该模型存在一个Fold-Hopf分支临界点p=p*,τ=τ0;在(p,τ)参数平面上,该模型出现了拟周期解以及爆发行为等复杂的动力学现象. We employed the polynomial theorem to analyze the distribution of the roots of the associated characteristic equation for the linearized system at the coexisting equilibrium in a Gause- type food chain model. A group of conditions of existence of Fold-Hopf bifurcation were obtained at the coexisting equilibrium. The result indicates that there exists a Fold-Hopf bifurcation point p=p* , τ=τ0 in the model. There are complex dynamic behavior such as quasi-periodic motion andbursting behavior on the parameter plane (p,τ).
作者 郭爽 张玲
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第5期802-806,共5页 Journal of Jilin University:Science Edition
基金 黑龙江省教育厅科学技术研究项目(批准号:11553003)
关键词 Gause型模型 Fold—Hopf分支 拟周期解 爆发行为 Gause-type model Fold-Hopf bifurcation quasi-periodic bursting behavior
  • 相关文献

参考文献9

  • 1Freedman H I, Waltman P. Mathematical Analysis of Some Three-Species Food-Chain Models [J]. Mathematical Biosciences, 1977, 33(3): 257-276.
  • 2Ginoux J M, Rossetto B, Jamet J L. Chaos in a Three-Dimensional Volterra-Gause Model of Predator-Prey Type [J]. International Journal of Bifurcation and Chaos, 2005, 15(5): 1689-1708.
  • 3Hastings A, Powell T. Chaos in a Three-Species Food Chain [J]. Ecology, 1991, 72(3): 896-903.
  • 4LIU Gui-rong, YAN Wei-ping, YAN Ju-rang. Positive Periodic Solutions for a Class of Neutral Delay Gause-Type Predator-Prey System [J]. Nonlinear Analysis: Theory, Methods Applications, 2009, 71(10): 4438-4447.
  • 5WANG Hong-bin, JIANG Wei hua. Hopf-Pitchfork Bifurcation in Van Der Pol's Oscillator with Nonlinear Delayed Feedback [J]. Journal of Mathematical Analysis Applications, 2010, 368(1): 9-18.
  • 6GUO Shuang, LIU Yang, SHA Yuan-xia, et al. Stability and Bifurcation Analysis on Gause-Type Predator-Prey Model [J]. Journal of Jilin University: Science Edition, 2012, 50(5): 940-944.
  • 7Hale J K. Theory of Functional Differential Equations [M]. New York: Springer, 1977.
  • 8Faria T, Magalhves L T. Restrictions on the Possible Flows of Scalar Retarded Functional Differential Equations in Neighborhoods of Singularities [J]. Journal Dynamics and Differential Equations, 1996, 8(1): 35-70.
  • 9JIANG Wei-hua, WANG Hong-bin. Hopf-Transcritical Bifurcation in Retarded Functional Differential Equations [-J]. Nonlinear Analysis: Theory, Methods Applications, 2010, 73(11): 3626-3640.

同被引文献32

  • 1李云.具有扩散和群体防卫的简单食物链的Hopf分支[J].应用数学学报,1994,17(2):287-299. 被引量:1
  • 2杨小京.Routh-Hurwitz判别法的一个应用[J].清华大学学报(自然科学版),1996,36(2):79-82. 被引量:5
  • 3唐驾时,萧寒.耦合的van der Pol振子的极限环幅值控制[J].物理学报,2007,56(1):101-105. 被引量:7
  • 4Abed E" H,Fu j H. Local Feed back Stabilization and Bifurcation Control, I . Hopf Bifurcation [J].Systems & Control Letters, 1986,7(1): 11-17.
  • 5Wang H O,Abed E H. Bifurcation Control of a Chaotic System [J]. Automatica,1 995,31 (9): 1213-1226.
  • 6WEN Guilin,XU Daolin. Control Algorithm for Creation of Hopf Bifurcations in Continuous-Timc Systems of Arbitrary Dimension jj]. Physics Letters A,2005,337(1/2): 93-100.
  • 7Angulo F,Bernardo M,Fossas E",et al. Feed back Control of Limit Cyclcs:A Switching Control Strategy Based on Nonsmooth Bifurcation Theory [J]. EEE Transactions on Circuits and Systems, 2005, 52(2) : 366-378.
  • 8Sotomayor j,Mcllo L F, Braga D C. Bifurcation Analysis of the Watt Governor System [J]. Computational & Applied Mathematics,2007,26( 1 ): 1 9-44.
  • 9Kuznetsov Y A. Elements of Applied Bifurcation Theory [M]. 3rd ed. New York: Springer,2004: 293-313.
  • 10Dias F S,Mcllo L F,ZHANG jiangang. Nonlinear Analysis in a Lorenz-Like System [J]. Nonlinear Analysis: Real World Applications,2010, 1 1 (5.): 3491-3500.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部