期刊文献+

风力机叶片疲劳裂纹AE信号的小波变换优化方法 被引量:4

Optimization Wavelet Transform of Wind Turbine Blades Cracks AE Signal
下载PDF
导出
摘要 为实现风力机叶片的及时有效地监测和维护,使用声发射技术采集疲劳裂纹信号,从而提取裂纹特征。而声发射信号的突发性和冲击性需要具有时频分析能力的信号处理方式来提纯和降噪,小波变换方法作为常用的时频处理方式油漆有效性,但是现有的小波基函数不足以适应该信号的分析。提出基于Shannon熵理论计算疲劳裂纹扩展的声发射信号的小波基函数带宽参数,得到最适合此裂纹声发射信号的Morlet小波基函数,计算优化基函数的小波,获得风力机疲劳裂纹特征成分在时间尺度平面的高幅值能量分布。实验研究表明,优化小波基的方法具有很好的时频聚集性和抗噪能力,实现了风力机叶片裂纹声发射信号的时频特征清晰准确的提取。 In order to monitor and maintain fiber composite blades, acoustic emission (AE) techniques are employed to monitor fatigue crack in blades, and the feature of cracks is extracted. Given the abruptness and impact of AE signal, wavelet transformation method is commonly used as the time-frequency method effectively, but the existing wavelet basis is not enough to adapt to the AE signal of wind turbine blades. The method of optimization wavelet transform of AE signals is put forward. Basis funetion bandwidth of wavelet is calculated based on Shannon entropy, the most suitable basis function for AE signals of cracks of wind turbine blades. Therefore, the optimization wavelet of two types of crack AE signal has high amplitude energy distribution in time-scale plane. Experimental research proves that the proposed method has excellent time- frequency concentration and noise restraining ability, and extracts time-frequency fault feature of wind turbine blade AE signals distinctly. Moreover, this method can be applied for identification cracks and monitor the degraded condition in complex environment of wind turbine blades.
出处 《机械设计与制造》 北大核心 2013年第9期190-192,共3页 Machinery Design & Manufacture
基金 国家自然科学基金项目(50975180 51005159)
关键词 风力机 声发射 小波变换 Shannon熵 特征提取 参数优化 Wind Turbine Blades Acoustic Emission (AE) Wavelet Scalogram Reassigned Scalogram ShannonEentropy Feature Extraction Parameter Optimization
  • 相关文献

参考文献12

  • 1Kirikera.G.R., Schulz.M.J., Sundaresan.M.J.Multiple damage identification on a wind turbine blade using a structural neural system [J]. Proceedings of the SPIE-The International Society for Optical Engineering, 2007, 6530: 65300T-1-12.
  • 2J.C. Martn, A. Barroso, F. Paris, J. Ca?as. Study of fatigue damage in wind turbine blades[ J 1. Engineering Failure Analysis, 2009,16( 2): 656-668.
  • 3H.L.Dunegan. Detection of fatigue crack growth by acoustic emission techniques[J ].Materials Evaluation. 1970,28( 10):221-223.
  • 4Ziola S. Digital signal processing of modal emission signals [J ]. Journal of Acoustic Emission, 1996, 14(3/4): 12-18.
  • 5Lekou D,Vionis P, Joosse P A. Full-scale blade testing enhanced by acoustic emission monitoring[C ].Proc European Wind Energy Conference, Madrid, Spain, 2003.
  • 6Paquette J, Van Dam J, Hughes S. Structural testing of 9m carbon fiber wind turbine research blades [ C ]. AIAA 2007 Wind Energy Symposium, Reno, USA,2007.
  • 7Tavner P J. Review of condition monitoring of rotating electrical machines [J]. IET Electric Power Applica-tions, 2008, 2(4):215-247.
  • 8朱忠奎,陈再良,王传洋.基于小波尺度图重分配的轴承瞬态特征检测与提取[J].数据采集与处理,2005,20(3):356-360. 被引量:8
  • 9宁辰校.小波分析及其在机械故障诊断中的应用[J].机械设计与制造,2002(5):5-6. 被引量:8
  • 10陈顺云,杨润海,王赟赟,赵晋明,许昭永.小波分析在声发射资料处理中的初步应用[J].地震研究,2002,25(4):328-334. 被引量:6

二级参考文献30

共引文献34

同被引文献41

  • 1陈莲芳,徐夕仁.风机振动故障诊断及处理[J].热能动力工程,2006,21(1):96-98. 被引量:21
  • 2A G Dutton,M Blanch,P Vionis,et al.Acoustic Emission Monitoring from Wind Turbine Blades undergoing Static and Fatigue Testing[J].2000,42(12):805-808.
  • 3M.J.Sundaresan,M.J.Schulz.A,Ghoshal.Structural Health Monitoring Static Test of a Wind Turbine Blade[J].Journal of wind engineering and industrial aerodynamics,2006,85(2000):309-324.
  • 4Overgaard L C T,Lund E,Thomsen O T.Structural collapse of a wind turbine blade.Part A:Static test and equivalent single layered models[J].Composites Part A:Applied Science and Manufacturing(Incorporating Composites and Composites Manufacturing),2010,(41):257-270.
  • 5赵新光.基于声发射和小波分析的大型风力机叶片材料损伤识别研究[D].沈阳工业大学硕士学位论文,2009.
  • 6曲弋,陈长征.MW级风力发电机组关键部件振动分析与故障诊断方法研究[D].沈阳工业大学博士学位论文,2012.
  • 7Marin J C,Barroso A,Paris F,et al.Study of fatigue damage in wind turbine blades[J].Engineering Failure Analysis,2009,16(2):656-668.
  • 8杭州威步科技有限公司.NewMsg-RF905[EB/OL].(2009-3-1)[2014-1-3].http://www.newmsg.com/products/NewMsg-RF905.pdf.
  • 9Kirikera.G.R.,Schulz.M.J.,Sundaresan.M.J.Multiple damage identification on a wind turbine blade using a structural neural system[J].Proceedings of the SPIE-The International Society for Optical Engineering,2007,6530:65300T-1-12.
  • 10J.C.Marín,A.Barroso,F.París,J.Caas.Study of fatigue damage in wind turbine blades[J].Engineering Failure Analysis,2009,16(2):656-668.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部