期刊文献+

过测地线的B样条曲面优化设计 被引量:5

Optimization Design of B-Spline Surfaces through Geodesics
下载PDF
导出
摘要 给定一组不相交B样条曲线或满足一定约束的相交B样条曲线,提出了插值已知B样条曲线且以这组曲线为等参测地线的B样条曲面构造方法.插值曲面上的控制顶点分2步确定:首先利用B样条乘积和升阶理论显式计算曲面上与插值条件相关的控制顶点,其次由极小化Dirichlet能量确定曲面上其他自由控制顶点.采用文中方法构造的插值测地线曲面具有次数低、形状易控制等优点,并通过计算实例验证了该方法的正确性和有效性. Given a set of non-intersecting B-spline curves or intersecting B-spline curves which satisfy certain constraints, the B-spline surfaces are constructed to interpolate these curves, such that they are the boundary geodesics of the constructed surfaces. The control points of interpolating surfaces are determined in two steps. Firstly, based on the theory of products and degree raising of B-spline, the control points related with interpolation conditions are computed explicitly. Secondly, other free control points of the surfaces are determined by minimizing the Dirichlet energy. The constructed surfaces have such advantages as low degrees and easily-controlled shape, and the correctness and validity of the proposed method is demonstrated by the computational examples.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第10期1433-1438,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61272300) 国家自然科学基金重点项目(60933008)
关键词 B样条曲面 测地线 优化设计 B-spline surfaces geodesic optimization design
  • 相关文献

参考文献2

二级参考文献24

  • 1Celniker G, Welch W. Linear constraints for deformable Bspline surfaces [C]//Proc of the 1992 Symp on Interactive 3D Graphics. New York: ACM, 1992:165-170
  • 2Welch W, Watkin A. Variational surface modeling [J]. Computer Graphics, 1992, 26(2): 157-166
  • 3Zhao H Y, Wang G J. A new approach for designing rational Bezier surfaces from a given geodesic [J]. Journal of Information and Computational Science, 2007, 4 (2) : 879 - 887
  • 4Terzopoulos D, Platt J, Barr A, et a l. Elastically deformable models [J]. Computer Graphics, 1987, 21(4) :205-214
  • 5Brond R, Jeulin D, Gateau P, et al. Estimation of the transport properties of polymer composites by geodesic propagation [J]. Journal of Microscopy, 1994, 176(2) : 167- 177
  • 6Bryson S. Virtual spacetime: An environment for the visualization of curved spacetimes via geodesic flows [C]// Proc of IEEE Visualization'92 Conference. Los Alamitos, CA: IEEE Computer Society, 1992:291-298
  • 7Haw R J, Munchmeyer R C. Geodesic curves on patched polynomial surfaces [J]. Computer Graphics Forum, 1983, 2 (4) : 225-232
  • 8Haw R J. An application of geodesic curves to sail design [J]. Computer Graphics Forum, 1985, 4(2): 137-139
  • 9Wang G J, Tang K, Tai C L. Parametric representation of a surface pencil with a common spatial geodesic [J]. Computer- Aided Design, 2004, 36(5): 447-459
  • 10Piegl L. Modifying the shape of rational B-splines. Part 2: Surfaces [J]. Computer-Aided Design, 1989, 21 (9) : 538- 546

共引文献8

同被引文献39

  • 1Attene M, Campen M, Kobbelt L. Polygon mesh repairing: anapplication perspective[J]. ACM Computing Surveys, 2013,45(2): Article No.15.
  • 2Pang X F, Song Z, Lau R W H. An effective quad-dominantmeshing method for unorganized point clouds[J]. GraphicalModels, 2014, 76 (2): 86-102.
  • 3Kustra J, Jalba A, Telea A. Robust segmentation of multiple intersectingmanifolds from unoriented noisy point clouds[J].Computer Graphics Forum, 2014, 33 (1): 73-87.
  • 4Campen M, Kobbelt L. Walking on broken mesh: defect-tolerantgeodesic distances and parameterizations[J]. ComputerGraphics Forum, 2011, 30 (2): 623-632.
  • 5Quynh D T P, He Y, Xin S Q, et al. An intrinsic algorithm forcomputing geodesic distance fields on triangle meshes withholes[J]. Graphical Models, 2012, 74 (4): 209-220.
  • 6Radwan M, Ohrhallinger S, Wimmer M. Efficient collision detectionwhile rendering dynamic point clouds[C] //Proceedingsof the Graphics Interface Conference. Toronto: Canadian InformationProcessing Society Press, 2014: 25-33.
  • 7Crane K, Weischedel C, Wardetzky M. Geodesics in heat: anew approach to computing distance based on heat flow[J].ACM Transactions on Graphics, 2013, 32 (5): Article No.152.
  • 8Mitchell J S B, Mount D M, Papadimitriou C H. The discretegeodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668.
  • 9Sharir M, Schorr A. On shortest paths in polyhedral spaces[J].SIAM Journal on Computing, 1986, 15 (1): 193-215.
  • 10Xin S Q, Wang G J. Improving Chen and Han’s algorithm onthe discrete geodesic problem[J]. ACM Transactions on Graphics,2009, 28 (4): Article No.104.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部