期刊文献+

基于扩展测地线的鞋楦围长测量 被引量:1

Shoe Last Girth Measuring by Extended Geodesic with Width
下载PDF
导出
摘要 通过扩展测地线的定义,把鞋楦围长测量问题转化为求解鞋楦曲面上带宽度属性的测地线问题.首先以传统测地线为初始曲线在鞋楦曲面上构造具有一定宽度的子曲面,对子曲面进行离散点采样并构造弹簧质点系统;用带曲面约束的弹簧质点系统的运动能量作为子曲面的运动能量,再基于迭代优化的方法最小化子曲面能量,基于测地线思想计算出的鞋楦表面最短路径即为鞋楦围长;此外,对耗时较多的曲面约束计算采用GPU并行加速,进一步缩短了计算时间.实验结果表明,鞋楦围长测量结果达到了行业精度要求. Measuring the girth of shoe last on polygonal mesh is an important problem in modern shoe- making CAD systems. In this paper we introduce a novel approach to measure the girth of digitized shoe last by extending the traditional geodesic with width. Firstly, it constructs a subsurface on shoe last based on a specified geodesic and its width. The energy of subsurface is defined in terms of a constrained mass-spring system. Secondly, an iterative optimization mechanism is employed to minimize the energy of this surface while it is moving on the shoe last. At last, the extended geodesic is extracted as the desired path of girth of the current shoe last after the convergence of aforementioned minimization. Furthermore, the time-consuming part of energy calculation is accelerated with a GPU implementation. Experimental results show that both precision and time performance of our approach can fulfill the requirements of shoe last measuring in the shoe-making industry.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第10期1530-1539,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家科技支撑计划子课题(2006BAF01A44)
关键词 鞋楦围长测量 扩展测地线 曲面最短路径 girth measuring of shoe last extended geodesic shortest path on surface
  • 相关文献

参考文献3

二级参考文献38

  • 1李思益,徐锋,马乾坤.个性化鞋楦的数字化设计方法[J].中国皮革,2003,32(8):138-139. 被引量:5
  • 2徐从富,刘勇,蒋云良,潘云鹤.个性化鞋楦CAD系统的设计与实现[J].计算机辅助设计与图形学学报,2004,16(10):1437-1441. 被引量:29
  • 3罗逸苇,李文燕,卢行芳.个性化鞋楦设计与制造[J].中国皮革,2006,35(2):116-117. 被引量:3
  • 4林砺宗.鞋楦数字化建模与三维图形编辑技术[J].中国皮革,2006,35(8):144-148. 被引量:2
  • 5陈国学.鞋楦设计[M].北京:中国轻工业出版社,2007.
  • 6D'Apuzzo N. Overview of 3D surface digitization technologies in Europe[C ]//Proceedings of SPIE, San Jose, 2006, 6056:42-54.
  • 7Kondo S, Akagi Y, Kitajima K. Study on a method of generating a 3D virtual foot model with use of a measuring technique based on multiple camera image data[C] //Proceedings of Society of Instrumentation and Control Engineers Annual Conference, Takamatsu, 2007:7-11.
  • 8Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986 8(6) :679-698.
  • 9Harris C, Stephens M. A combined corner and edge detector[C]//Proceedings of the 4th Alvey Vision Conference, Manchester, 1988: 147-151.
  • 10Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

共引文献35

同被引文献29

  • 1Attene M, Campen M, Kobbelt L. Polygon mesh repairing: anapplication perspective[J]. ACM Computing Surveys, 2013,45(2): Article No.15.
  • 2Pang X F, Song Z, Lau R W H. An effective quad-dominantmeshing method for unorganized point clouds[J]. GraphicalModels, 2014, 76 (2): 86-102.
  • 3Kustra J, Jalba A, Telea A. Robust segmentation of multiple intersectingmanifolds from unoriented noisy point clouds[J].Computer Graphics Forum, 2014, 33 (1): 73-87.
  • 4Campen M, Kobbelt L. Walking on broken mesh: defect-tolerantgeodesic distances and parameterizations[J]. ComputerGraphics Forum, 2011, 30 (2): 623-632.
  • 5Quynh D T P, He Y, Xin S Q, et al. An intrinsic algorithm forcomputing geodesic distance fields on triangle meshes withholes[J]. Graphical Models, 2012, 74 (4): 209-220.
  • 6Radwan M, Ohrhallinger S, Wimmer M. Efficient collision detectionwhile rendering dynamic point clouds[C] //Proceedingsof the Graphics Interface Conference. Toronto: Canadian InformationProcessing Society Press, 2014: 25-33.
  • 7Crane K, Weischedel C, Wardetzky M. Geodesics in heat: anew approach to computing distance based on heat flow[J].ACM Transactions on Graphics, 2013, 32 (5): Article No.152.
  • 8Mitchell J S B, Mount D M, Papadimitriou C H. The discretegeodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668.
  • 9Sharir M, Schorr A. On shortest paths in polyhedral spaces[J].SIAM Journal on Computing, 1986, 15 (1): 193-215.
  • 10Xin S Q, Wang G J. Improving Chen and Han’s algorithm onthe discrete geodesic problem[J]. ACM Transactions on Graphics,2009, 28 (4): Article No.104.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部