摘要
将平滑Wigner三谱切片理论应用到混沌序列(Lorenz)、分形序列(Conway)和周期序列(Sin),检验了抗噪、抑制交叉性和能量集中性能力。结果表明:平滑Wigner三谱切片方法在这三方面性能上具有明显的优势,可以应用到现场采集到的波动信号上。在此基础上,对水力直径为1.15mm的矩形小通道内氮气-水两相流型的差压信号进行了研究。通过对流型差压信号平滑Wigner三谱切片、等高线以及二次切片的分析揭示了不同流型的演化规律,同时也为其他不同介质的多相流动特性分析与流型辨识提供了一个新的思路。
In order to test the anti-noise ability, inhibition cross-term interference and ability of concentrating energy, the smoothed Wigner-Ville tri-spectrum theory was applied to fractal sequence (Conway), chaotic sequence (Lorenz) and periodic sequence (sine signal). The results showed that the smoothed Wigner-Ville tri-spectrum had obvious advantages in these three aspects of performance compared with other Wigner-Ville spectral theories when it was applied to the analysis of field fluctuation signals. On this basis, the differential pressure signals of nitrogen-water two-phase flow in small rectangular channel were studied. By the analysis of the slice, contour and secondary slice of smoothed Wigner-Ville tri-spectrum of different flow patterns, the evolution of different flow patterns was revealed. At the same time, the smoothed Wigner-Ville tri-spectrum theory could provide a new approach to further revelation of flow mechanism and flow pattern identification of multi-phase flow of different media.
出处
《化工学报》
EI
CAS
CSCD
北大核心
2013年第10期3571-3580,共10页
CIESC Journal
基金
国家自然科学基金项目(51276033)
东北电力大学博士科研启动基金项目(BSJXM-201208)
东北电力大学科研提升青年骨干基金项目(KYTSQN-201204)~~
关键词
平滑Wigner三谱切片
小通道两相流
流型
smoothed Wigner-Ville tri-spectrum slices
small channel two-phase flow
flow pattern