期刊文献+

双矩阵变量Riccati矩阵方程对称解的迭代算法 被引量:10

An Iterative Method to Find Symmetric Solutions of Two-variable Riccati Matrix Equation
原文传递
导出
摘要 研究一类双矩阵变量Riccati矩阵方程(R-ME)对称解的数值计算问题.运用牛顿算法求R-ME的对称解时,会导出求双矩阵变量线性矩阵方程的对称解或者对称最小二乘解的问题,采用修正共轭梯度法解决导出的线性矩阵方程约束解问题,可建立求R-ME的对称解的迭代算法.数值算例表明,迭代算法是有效的. An iterative method is studied to solve for symmetric solutions of a two-variable Riccati matrix equation. First, when Newton's method is applied for computing the sym- metric solutions of the Riccati matrix equation, a linear matrix equation will be derived, and we need to find its symmetric solutions or symmetric least-squares solutions. Then, we use the modified conjugate gradient method to solve the derived linear matrix equation. Finally, an iterative method is established to solve for symmetric solutions of the Riccati matrix equation. Numerical examples show that the iterative method is effective.
出处 《应用数学学报》 CSCD 北大核心 2013年第5期831-839,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11071196)资助项目
关键词 Riccati矩阵方程 对称解 牛顿算法 修正共轭梯度法 迭代算法 Riccati matrix equation symmetric solutions Newton's method modified conjugate gradient method iterative method
  • 相关文献

参考文献13

  • 1王欣,史忠科.高阶Riccati方程加权阵选择方法及其在飞控中的应用[J].航空学报,2005,26(3):328-333. 被引量:5
  • 2李娟,叶若红.双时滞系统的故障诊断和动态最优容错控制[J].控制理论与应用,2008,25(6):1021-1026. 被引量:3
  • 3Abdelrahman M, Chang I, Park S Y. Magnetic Torque Attitude Control of a Satellite Using Riccati Equation Technique. International Journal of Non-Linear Mechanics, 2011, 46:758-771.
  • 4Chou C C, Wyatt R E. Riccati Differential Equation for Quantum Mechanical Bound States: Com- parison of Numerical Integrators. International Journal of Quantum Chemistry, 2008, 108:238-248.
  • 5Dehghan M, Hajarian M. Analysis of an Iterative Algorithm to Solve the Generalized Coupled Sylvester Matrix Equations. Applied Mathematical Modelling, 2011, 35:3285-3300.
  • 6Gao Y H. Newton's Method for the Quadratic Matrix Equation. Applied Mathematics and Compu- tation, 2006, 182:1772-1779.
  • 7Long J H, Hu X Y, Zhang L. Improved Newton's Method with Exact Line Searches to Solve Quadratic Matrix Equation. Journal of Computational and Applied Mathematics, 2008, 222:645454.
  • 8Higham N J, Kim H M. Solving a Quadratic Matrix Equation by Newton's Method with Exact Line Searches. SIAM Journal on Matrix Analysis and Applications, 2001, 23:303-316.
  • 9年晓红,杨胜跃,郭丽梅.耦合R iccati不等式组解的局部优化算法及其在微分对策中的应用[J].系统工程,2005,23(6):105-109. 被引量:5
  • 10Mukaidani H. A New Design Approach for Solving Linear Quadratic Nash Games of Multiparameter Singularly Perturbed Systems. IEEE Transactions on Circuits and Systems, 2005, 52(5): 960-974.

二级参考文献46

共引文献25

同被引文献61

引证文献10

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部