期刊文献+

基于FPGA的素域模乘快速实现方法 被引量:5

Fast Implementation of Prime-Field Modular Multiplication based on FPGA
原文传递
导出
摘要 素域中的模乘运算是椭圆曲线密码体制中必不可少的基本运算,模乘运算的速度影响椭圆曲线算法的整体性能。文中设计了一种融合了窗口技术和流水线技术的素域模乘快速实现方法,采用硬件描述语言VHDL完成模乘的设计实现,并优化设计,充分发挥了流水线的优势。通过Modelsim仿真工具仿真,正确完成一次模乘运算只需要96个时钟周期。在Altera EP2AGX45 FPGA中的运行结果表明:150 Mhz的时钟频率下,完成一次384 bits的模乘运算仅需要0.64 us。 The operation of modular multiplication in prime field is the basic operation absolutely necessary in elliptic curve cryptography, and this operation capability directly affects the overall performance of elliptic curve cryptography. A fast implementation of prime-field modular multiplication with window technology and pipelining technology is designed, and the algorithm of modular multiplication is designed with VHDL, and optimized by fully taking the advantages of pipelining. Simulation with Modelism indicates that an accurate completion of modular multiplication requires only 96 clock circles. And the simulation on AlteraEP2AGX45 FPGA shows that a modular multiplication of 384 bits only takes 0.64 us under 150 Mhz clock frequency.
出处 《信息安全与通信保密》 2013年第9期76-78,共3页 Information Security and Communications Privacy
关键词 素域 模乘 窗口 流水线 prime field modular multiplication window pipelining
  • 相关文献

参考文献7

二级参考文献23

  • 1邹候文,王峰,唐屹.椭圆曲线点乘IP核的设计与实现[J].计算机应用,2006,26(9):2131-2133. 被引量:5
  • 2Koblitz N. Elliptic Curve Cryptosystems[J]. Mathematics of Computation,1987,48:203-209.
  • 3Miller V. Uses of Elliptic Curves in Cryptography[A]. Advances in Cryptology-Crypto'85, LNCS218[C]. New York:Springer-Verlag, 1986, 417- 426.
  • 4Gordon D. A Survey of Fast Exponentiation Methods[J]. Journal of Algorithms, 1998,27:129-146.
  • 5Lim C, Lee P. More Flexible Exponentiation with Precomputation[A]. Advances in Cryptology-Crypto'94, LNCS839[C]. New York:Springer-Verlag, 1994, 95-107.
  • 6ElGamal T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms[J]. IEEE Transactions on Information Theory, 1985,31:469-472.
  • 7National Institute of Standards and Technology. Digital Signature Standard[S]. FIPS Publication 186,1993.
  • 8Johnson D, Menezes A. The Elliptic Curve Digital Signature Algorithm (ECDSA)[R]. Waterloo:Dept. of C&O, University of Waterloo, 1999.
  • 9Nyberg K, Rueppel R A. A New Signature Scheme Based on the DSA Giving Message Recovery[A]. 1st ACM Conf. on Computer and Communication Security[C].New York:ACM Press, 1993.
  • 10Lopez Julio,Dahab Ricardo.Fast Multiplication on Elliptic Curves over GF(2m) without Precomputing[C].In Proceedings of the First International Workshop on Cryptographic Hardware and Embedded Systems.London,UK:Springer Verlag 1999:316-327.

共引文献18

同被引文献24

  • 1高献伟,靳济方,方勇,李为民.GF(2^m)域乘法器的快速设计及FPGA实现[J].计算机工程与应用,2004,40(25):111-112. 被引量:9
  • 2周轶男,李曦,朱兆国.椭圆曲线密码算法的硬件设计与实现[J].计算机系统应用,2006,15(3):43-45. 被引量:1
  • 3Edwards H M. A Normal Form for Elliptic Curves [ J ]. Bulletin of the American Mathematical Society, 2007, 44 ( 3 ) : 393-422.
  • 4Bemstein D J, Lange T. Faster Addition and Doubling on Elliptic Curves[ J]. Asiacrypt,2007(10) :29-50.
  • 5Diffie W,Hellman M E.New directions in cryptography[J].IEEE Trans Information Theory,1976,22:644-654.
  • 6IEEE.IEEE 1363—2000standard specifications for public-key cryptography[S].New York:IEEE Computer Society,2000.
  • 7Lopez J,Dahab R.Improved algorithms for elliptic curve arithmetic in GF(2m)[C]∥Proceedings of the Selected Areas in Cryptography.Heidelberg:Springer-Verlag,1998:201-212.
  • 8Montgomery P L.Modular multiplication without trial division[J].Math Computation,1985,44(7):519-521.
  • 9Wallace C S.A suggestion for a fast multiplier[J].IEEE Transactions on Electronic Computers,1964,EC-13(1):14-17.
  • 10Shieh M D,Lin W C.Word-based montgomery modular multiplication algorithm for low-latency scalable architectures[J].IEEE Transactions on Computers,2010,59(8):1145-1151.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部