期刊文献+

基于划分社区和差分共邻节点贡献的链路预测 被引量:10

Link prediction based on partitioning community and differentiating role of common neighbors
下载PDF
导出
摘要 通过改进基于节点相似度的朴素贝叶斯模型,引入GN和CMN两种经典的划分社区算法挖掘网络社区属性对预测节点对的影响,赋予共邻节点不同的连接度和社区贡献度并计算其贡献权重,同时把模型应用于五种相似度算法,采用ROC和Precision-Recall曲线进行实验评价。人工网络和真实网络中的实验证明,该模型能够在深入挖掘社会网络结构信息的基础上提高预测的精确度,同时为该类模型的研究提供一种新的方案。 This paper examined a new measure of link prediction based on an enhance local naive Bayesian model which ap- plying two classic community partition algorithm: GN and CMN to mine network's communities attributes and impact on the predicted node, then entrusted common-neighbors connectivity and community participation degree to calculate the weight of their contribution, finally improved five similarity based algorithm and took ROC and Precision-Recall curve as experimental e- valuation. Artificial networks and real network experiments show that the model can mine the latent social network structure in- formation and enhance accuracy of link prediction.
作者 伍杰华
出处 《计算机应用研究》 CSCD 北大核心 2013年第10期2954-2957,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61003045)
关键词 链路预测 社会网络 社区划分 相似度算法 共邻节点 link prediction social network community partition similarity algorithms common neighbors
  • 相关文献

参考文献16

  • 1HOLLAND P W, LASKEY K B,LEINHARDT S. Social networks[M]. 1983.
  • 2WASSERMAN S, FAUST K. Social network analysis: methods andapplications[M]. [S. 1.] :Cambridge University Press, 1994.
  • 3LV Lin-yuan, ZHOU Tao. Link prediction in complex networks : asurvey[J]. Physica A,2011,390(6) :1150-1170.
  • 4LIBEN-NOWELL D,KLEINBERG J. The link-prediction problem forsocial networks [ J]. Journal of the American Society for Informa-tion Science and Technology,2007,58(7) :1019-1031.
  • 5CLAUSET A, MOORE C, NEWAMAN M E J. Hierarchical structureand the prediction of missing links in networks [ J]. Nature, 2008 ,453(7191) :98-101.
  • 6DONGHYUK S,SI S,' DHILLON I S. Multi-scale link prediction[C] //Proc of the 21st ACM International Conference on Informationand Knowledge Management. 2012 :215-224.
  • 7VALVERDE-REBAZA J C, De ANDRADE L A. Link prediction incomplex networks-based on cluster information [ C] //Proc of the 21stBrazilian Conference on Advances in Artificial Intelligence. 2012:92-101.
  • 8FORTUNATO S. Community detection in graphs[ J]. Physics Re-ports,2010,486(3) :75-174.
  • 9NEWMAN M E J. Communities, modules and large-scale structure innetworks [J]. Nature Physics,2011,8(1) :25-31.
  • 10NEWMAN M E, GIRVAN M. Finding and evaluating communitystructure in networks [ J]. Physical Review E,2004, 69 ( 2 ):026113.

同被引文献62

  • 1吴少华,崔鑫,胡勇.基于SNA的网络舆情演变分析方法[J].四川大学学报(工程科学版),2015,47(1):138-142. 被引量:13
  • 2Wang P,González MC,Menezes R,et al.Understanding the Spread of Malicious Mobile-phone Programs and Their Damage Potential[J].International Journal of Information Security,2013,12(5):383-392.
  • 3LüLinyuan,Medo M,Yeung C H,et al.Recommender Systems[J].Physics Reports,2012,519(1):1-49.
  • 4Wang Dashun,Pedreschi D,Song Chaoming,et al.Human Mobility,Social Ties,and Link Prediction[C]//Proceedings of the 17th ACM SIGKDD International Conference on Know ledge Discovery and Data Mining.New York,USA:ACM Press,2011:1100-1108.
  • 5Simini F,González MC,Maritan A,et al.A Universal Model for Mobility and Migration Patterns[J].Nature,2012,484(7392):96-100.
  • 6Onnela J P,Arbesman S,González MC,et al.Geographic Constraints on social Netw ork Groups[J].PLo S ONE,2011,6(4).
  • 7Hasan M A,Chaoji V, Salem S,et al.Link prediction using supervised learning[C]//In Proe.of SDM 06 workshop on Link Analysis, Cotmterterrorism and Security.Bethesda,MD, USA:lEEE Press,2006: 189-196.
  • 8Taskar B,Wong M,Abbeel P, et al.Link prediction in relational data[C]//In Advances in Neural Information Processing Systems.Lake Tahoe, Nevada,USA:IEEE Press,2013:235-242.
  • 9Clauset A,Moor~ C,Newman M.Struetural inference of hierarchies in networks [C]//23rd International Conference on Machine Learning.Pittsburgh, Pennsylvania,USA:IEEE Press,2006:332-339.
  • 10Vatzquez A.Growing network with local rules:Preferential attachment, clustering hierarchy, and degree correlations[J].Physical Review E,2013,67(5):56-104.

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部