期刊文献+

异构环境下增强的自适应MapReduce调度算法 被引量:5

Enhanced adaptive MapReduce scheduling algorithm in heterogeneous environment
下载PDF
导出
摘要 针对Hadoop默认调度算法和异构环境下LATE调度算法的不足,在SAMR调度算法的基础上提出了一种增强的自适应MapReduce调度算法。该算法记录了每个节点的历史信息,采用K-means聚类算法动态地调整阶段进度值以找到真正需要启动备份的落后任务。实验结果表明,增强自适应的MapReduce调度算法在提高任务执行时间的估算误差以及准确识别慢任务方面具有一定的有效性。 Aiming at the shortage of Hadoop default scheduling algorithm and LATE scheduling algorithm of heterogeneous environment, this paper proposes an enhanced adaptive MapReduce scheduling algorithm on the basis of SAMR scheduling algorithm. The algorithm records the history information of each node, and uses K-means clustering algorithm to dynamically adjust the progress value, aims to find the slow tasks which are really need begin back-up. Finally, the experimental results show that the enhanced MapReduce scheduling algorithm has some validity in the aspect of improving the estimation error of the tasks’execution time and accurately identifying the slow tasks.
出处 《计算机工程与应用》 CSCD 2013年第19期39-43,140,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.12A520021) 河南省科学和技术部财政支持重点项目(No.122102310309,No.122102210117)
关键词 MAPREDUCE 推测执行 异构环境 K-MEANS算法 MapReduce speculative execution heterogeneous environment K-means algorithm
  • 相关文献

参考文献12

二级参考文献65

  • 1袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:48
  • 2袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:153
  • 3Vaquero L M, Rodero-Merino L, Caceres J, et al. A Break in the Clouds: Towards a Cloud DefinitionD]. ACM SIGCOMM Computer Communication Review, 2009, 39 ( 1 ) : 50- 55.
  • 4Bryant R E. Data-Intensive Supercomputing: the Case for DISC[R]. CMU Technical Report CMU-CS-07-128, Department of Computer Science, Carnegie Mellon University, 2007.
  • 5Dean J, Ghemawat S. MapReduce: Simplied Data Processing on Large Clusters[C]//Proc of OSDI '04,2004 : 137-150.
  • 6Colbyranger, Raghuraman R, Penmetsa A. Evaluating MapReduce for Multi-Core and Multiprocessor Systems[C]//Proc of the IEEE 13th Int'l Syrup on High Performance Computer Architecture, 2007 : 13-24.
  • 7Kruijf M D, Sankaralingam K. MapReduce for the Cell B. E. Architecture[-R]. Technical Report CS-TR-2007-1625, University of Wisconsin Computer Sciences University of Wisconsin, 2007.
  • 8He B S, Fang W B, Luo Q, et al. Mars: A MapReduce Framework on Graphics Processors[C]//Proc of the 17th Int'l Conf on Parallel Architectures and Compilation Techniques, 2008 : 260-269.
  • 9Apache Hadoop. Hadoop [EB/OL]. [2009-03-06]. http://hadoop, apache, org/.
  • 10Yahoo. Yahoo! Hadoop Tutorial [EB/OL]. [2009-02-27]. http:// public, yahoo, com/gogate/hadoop-tutorial/start-tutorial, html.

共引文献68

同被引文献104

  • 1韩伟.基于md0叩云计算平台下DDoS攻击防御研究[D].太原:太原科技大学,2011.
  • 2张欣晨,杨庚.Hadoop环境中基于属性和定长密文的访问控制方法[J/0L].计算机工程与应用.http://www.cnki.net/kcma/doi/10.3778/j.issn. 1002 - 8331. 1311 - 0372. html, 2014 - 04-03.
  • 3李克然.基于云计算的电子商务数据管理模式研究[D].西安:西安电子科技大学,2011.
  • 4霍树民.基于Hsdoop的海量影像数据管理关键技术研究[D].长沙:国防科学技术大学,2010.
  • 5杨寅.社会网络分析工具中的分布式最小生成树算法[D].北京:北京邮电大学,2011.
  • 6金松昌,方滨兴,杨树强.基于Hadoop的网络安全日志分析系统[A].第25次全国计算机安全学术交流会论文集·第25卷[C].2010.
  • 7李曼.云计算平台上的增量学习研究[D].南京:南京邮电大学,2012.
  • 8Mell P, Grance T. The NIST definition of cloud computing[ J/OL]. National Institute of Standards and Technology Special Publication 800 - 145, September 2011.
  • 9Armbrust M, Fox A, Griffith R, et al. Above the clouds: a Berkeley view of cloud computing. UCB/EECS-2009-28 ~ RJ. Electrical Engi- neering and Computer Sciences, University of California at Berkeley, 2009.
  • 10Arleen M A, Pawlikowski K, Willig A, et al. A framework for re- source allocation strategies in cloud computing environment I C ]// Computer Software and Applications Conference Workshops ( COMP- SACW), 2011 IEEE 35th Annual, 2011 : 261 -266.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部