摘要
Considering the effects of osmotic pressure, elastic bending, Maxwell pressure, surface tension, as well as flexo-electric and dielectric properties of phospholipid membrane, the shape equation for sphere vesicle in alternation (AC) electric field is derived based on the liquid crystal model by minimizing the free energy due to coupled mechanical and AC electrical fields. Besides the effect of elastic bending, the influence of osmotic pressure and surface tension on the frequency dependent behavior of vesicle membrane in AC electric field is also discussed. Our theoretical results for membrane deformation are consistent with corresponding experiments. The present model provides the possibility to further disclose the frequency-depended behavior of biological cells in the coupled AC electric and different mechanical fields.
Considering the effects of osmotic pressure, elastic bending, Maxwell pressure, surface tension, as well as flexo-electric and dielectric properties of phospholipid membrane, the shape equation for sphere vesicle in alternation (AC) electric field is derived based on the liquid crystal model by minimizing the free energy due to coupled mechanical and AC electrical fields. Besides the effect of elastic bending, the influence of osmotic pressure and surface tension on the frequency dependent behavior of vesicle membrane in AC electric field is also discussed. Our theoretical results for membrane deformation are consistent with corresponding experiments. The present model provides the possibility to further disclose the frequency-depended behavior of biological cells in the coupled AC electric and different mechanical fields.
基金
supported by the National Natural Science Foundation of China(11272046)
the Program for New Century Excellent Talents in University(NCET),and 111 Project