期刊文献+

基于按正弦周期律拓展的分数阶积分的变分问题的Noether定理 被引量:7

Noether's Theorem for Variational Problem Based on Fractional Integral Extended by Sine Periodic Law
下载PDF
导出
摘要 基于按正弦周期律拓展的分数阶积分的类分数阶动力学建模方法,研究完整系统的类分数阶Noether对称性和守恒量。首先,基于按正弦周期律拓展的分数阶积分,建立了类分数阶变分问题,导出了类分数阶d'Alembert-Lagrange原理,给出了类分数阶Euler-Lagrange方程;其次,基于类分数阶Hamilton作用量在无限小群变换下的不变性,提出了类分数阶Noether对称变换和Noether准对称变换的定义和判据;最后,建立了类分数阶Noether定理,揭示了系统的Noether对称性与守恒量之间的关系,并举例说明结果的应用。 Based on the fractional integral extended by sine periodic law introduced by EI-Nabulsi, the fractional action-like Noether symmetries and conserved quantities for holonomic systems are studied. First, the fractional action-like variational problem based on the fractional integral extended by sine peri- odic law is established, the fractional action-like d'Alembert-Lagrange principle is deduced, as well as the fractional action-like Euler-Lagrange equations is obtained. Secondly, the definitions and criteria of the fractional action-like Noether's (quasi-) symmetrical transformations are presented in terms of the in- variance of the fractional action-like Hamilton action under the infinitesimal transformations of group. Fi- nally, fractional action-like Noether's theorem for holonomic systems is explored, the relationship between the Noether symmetry and the conserved quantity of the system is revealed, and two examples are given to illustrate the application of the results.
作者 龙梓轩 张毅
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期51-56,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10972151 11272227) 江苏省普通高校研究生科研创新计划资助项目(CXLX11_0961) 苏州科技学院研究生科研创新计划资助项目(SKCX11S_051)
关键词 类分数阶Noether定理 按正弦周期律拓展的分数阶积分 类分数阶(准)对称变换 守恒量 fractional action-like Noether theorem fractional integral extended by sine periodic law fractional action-like (quasi-) symmetric transformation conserved quantity
  • 相关文献

参考文献6

二级参考文献107

共引文献43

同被引文献68

  • 1FU JingLi1,CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China,2 Department of Mechanics,Shanghai University,Shanghai 200072,China,3 Faculty of Mechanical-Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China.Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1687-1698. 被引量:9
  • 2赵跃宇.非保守力学系统的Lie对称性和守恒量[J].力学学报,1994,26(3):380-384. 被引量:77
  • 3徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30. 被引量:65
  • 4RIEWE F. Nonconservative lagrangian and hamiltonian mechanics [J]. Physical Review E, 1996, 53(2): 1890 - 1899.
  • 5RIEWE F. Mechanics with fractional derivatives [ J ]. Physical Review E, 1997, 55(3) : 3581 -3592.
  • 6AGRAWAL O P. Formulation of Euler-lagrange equations for fractional variational problems [ J ]. Journal of Mathe- matical Analysis and Applications, 2002, 272 ( 1 ) : 368 - 379.
  • 7ATANACKOVIC T M, KONJIK S, PILIPOVI C S, et al. Variational problems with fractional derivatives: In- variance conditions and Noether's theorem [ J ]. Nonlinear Analysis, 2009, 71 (5/6): 1504- 1517.
  • 8MALINOWSKA A B, TORRES D F M. Introduction to the fractional calculus of variations [ M ]. London : Impe- rial College Press, 2012.
  • 9EL-NABULSI A R. A fractional approach to nonconserva- tive Lagrangian dynamical systems [ J]. Fizika A, 2005, 14(4) : 289 -298.
  • 10EL-NABULSI A R. Fractional variational problems from extended exponentially fractional integral [ J ]. Applied Mathematics and Computation, 2011,217 : 9492 - 9496.

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部