期刊文献+

基于偏最小二乘与改进中心对称CENTRIST的快速行人检测算法 被引量:4

Fast Pedestrian Detection Algorithm Based on Partial Least Squares and Improved Center-symmetric CENTRIST
下载PDF
导出
摘要 针对复杂背景下的快速行人检测问题,从行人边缘信息的角度,该文提出了一种改进的中心对称统计变换(ICS_CENTRIST)特征,该特征只有32维,计算简单,描述能力强,可以很好地表达行人的边缘轮廓。行人检测时采用3级级联分类方法:第1级采用基于辅助积分图的线性支持向量机(SVM),快速排除大部分非行人区域;第2级,第3级分别使用偏最小二乘法(PLS)选出区分能力最强的前12和21个块(block),提取ICS_CENTRIST特征,采用直方图交叉核支持向量机(HIK-SVM)进行精确检测。实验结果表明,该文算法在复杂背景下可取得较好的检测效果,检测速度在447×358大小的图像上达到平均50 ms,与基于CENTRIST特征的快速检测方法和梯度方向直方图(HOG)算法相比分别提高了50%和90%,满足实时性要求。 According to the issue of pedestrian detection in complex background, this paper presents an Improved Center-Symmetric CENTRIST (ICS_CENTRIST) feature from the view of the pedestrian edge information. This feature has characters of simple calculation and powerful description ability. It can express the pedestrian's edge contour information perfectly with only 32 dimensions. Three cascaded classifier are used for pedestrian detection. The linear SVM based on auxiliary integral image is used for excluding most non-pedestrian area quickly in the first stage. During the second and third stages, the ICS_CENTRIST features of first 12 and 21 blocks with most strong distinguishable chosen by Partial Least Squares (PLS) method are accepted respectively, and then Histogram Intersection Kernel SVM (HIK-SVM) is used for accurate detecting. Experimental results show that this algorithm can get better detection results in complex background, and the detection speed is average 50 ms for 447 ~ 358 images, which is improved by 50% and 90% compared with the CENTRIST fast detecting and Histograms of Oriented Gradients (HOG) algorithm respectively and can meet the real-time requirements.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2040-2046,共7页 Journal of Electronics & Information Technology
基金 西南科技大学研究生创新基金(12ycjj30) 四川省教育厅基金(11ZA130)资助课题
关键词 行人检测 改进中心对称CENTRIST(ICS—CENTRIST)特征 偏最小二乘法 辅助积分图 直方图交叉核支持向量机 Pedestrian detection Improved Center-Symmetric CENTRIST (ICS_CENTRIST) feature PartialLeast Squares (PLS) Auxiliary integral image Histogram Intersection Kernel SVM (HIK-SVM)
  • 相关文献

参考文献10

  • 1Gall J, Yao A, Razavi N, Gool L, et al.. Hough forests for object detection, tracking, and action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2188- 2202.
  • 2Lehmann A, Leibe B, and Gool L. Fast prism: branch and bound hough transform for object class detection[J]. International Journal of Computer Vision, 2011, 94(2): 175-197.
  • 3Dalal N and Triggs B. Histograms of oriented gradients for human detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, USA, 2005: 885-893.
  • 4Wang X, Han T, and Yan S. An HOG-LBP human detector with partial occlusion handing[C]. IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 32-39.
  • 5Zheng Y, Shen C, Hartley R, et al.. Pyramid center- symmetric local binary/trinary patterns for effective pedestrian detection[C]. The 10th Asian Conference onComputer Vision (ACCV), Queenstown, New Zealand, 2010: 281-292.
  • 6Moctezuma D, Conde C, Martin D, et al.. Person detection in surveillance environment with HoGG: gabor filters and histogram of oriented grm:tient[C]. IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 2011: 1793-1800.
  • 7Wojek C, Walk S, and Schiele B. Multi-cue onboard pedestrian detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, USA, 2009: 794-801.
  • 8Wu J, Geyer C, and Rehg J. Real-time human detection using contour cues[C]. International Conference on Robotics and Automation, Shanghai, China, 201h 860-867.
  • 9欧阳毅,张三元,张引.基于窗口边缘梯度势能的人体遮挡多尺度检测算法[J].电子与信息学报,2012,34(4):858-864. 被引量:7
  • 10郭烈,王荣本,张明恒,金立生.基于Adaboost算法的行人检测方法[J].计算机工程,2008,34(3):202-204. 被引量:16

二级参考文献10

共引文献21

同被引文献24

  • 1Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2005:886-893.
  • 2Wang Xiaoyu,Han T X,Yan Shuicheng.An HOG-LBP Human Detector with Partial Occlusion Handling[C]//Proceedings of the12th IEEE Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2009:32-39.
  • 3Maji S,Berg A,Malik J.Classification Using Intersection Kernel Support Vector Machines is Efficient[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8.
  • 4Wu Jianxin,Geyer C,Rehg J M.Real-time Human Detection Using Contour Cues[C]//Proceedings of International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2011:860-867.
  • 5Wu Jianxin,Rehg J M.CENTRIST:A Visual Descriptor for Scene Categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1489-1501.
  • 6Benenson R,Mathias M,Timofte R,et al.Pedestrian Detection at100Frames per Second[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:2903-2910.
  • 7Ouyang Wanli,Wang Xiaogang.Single-pedestrian Detection Aided by Multi-pedestrian Detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2013:3198-3205.
  • 8Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 9Candes E,Romberg J,Tao T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 10Aharon M,Elad M,Bruckstein A.K-SVD:An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部