期刊文献+

基于社会网络增量的动态社区组织探测 被引量:5

A Dynamic Community Structure Detection Scheme Based on Social Network Incremental
下载PDF
导出
摘要 在现实世界中,社会网络结构并不是一成不变的,而是随着时间的推移不断变化,同样社区作为社会网络的一个本质特性也是如此。为了揭示真实的网络社区结构,该文提出一种基于属性加权网络的增量式动态社区发现算法,将网络的属性信息融合在拓扑图中,定义了节点与社区之间的拓扑势吸引,利用网络相对于前一时刻的改变量不断更新完善当前时刻社区结构。通过在真实网络数据上进行实验仿真,证明此算法能够更有效、更实时地发现有意义的社区结构,并具有较小的时间复杂性。 In the real world, the structure of social networks is not same communities as an essential feature of social networks is static, but varying with time's changing, and the also true. An incremental dynamic community detecting algorithm is proposed to reveal the actual communities based attribute weighted networks. It associates attribute information with topology graph and defines topological potential attraction between nodes and communities, using the incremental comparing with previous time to update the current community structure. The experiment on real network data proved that the proposed algorithm could be more effectively and timely to discover meaningful community structure, and having a smaller time complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2240-2246,共7页 Journal of Electronics & Information Technology
基金 国家863计划项目(2011AA7116031 2011AA010604) 国家973计划项目(2012CB315901)资助课题
关键词 社会网络 动态社区 属性加权 势吸引 增量 Social network Dynamic community Attribute weighted Potential attraction Incremental
  • 相关文献

参考文献15

  • 1Girvan M and Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2001, 99(12): 7821-7826.
  • 2Newman M E J and Girvan M. Finding and evaluating community structure in networks [J]. Physical Review E, 2004, 69(2 Pt 2): 026113.
  • 3Blondel V D, Guillaume J L, Lambiotte R, et al.. Fast unfolding of communities in large networks[J].Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008.
  • 4林友芳,王天宇,唐锐,周元炜,黄厚宽.一种有效的社会网络社区发现模型和算法[J].计算机研究与发展,2012,49(2):337-345. 被引量:51
  • 5Tang A and Viennet E. Community detection based on structural and attribute similarities[C]. ICDS: The Sixth International Conference on Digital Society, Valencia, Spain, 2012:7 -12.
  • 6Falkowski T. Community analysis in dynamic social networks[D]. [Ph.D. dissertation], University Magdeburg, 2009.
  • 7Dinh T, Xuan Y, and Thai M T. Towards social-aware routing in dynamic communication networks[C]. IPCCC: The28th IEEE International Performance Computing and Communications Conference, Phoenix, Arizona, USA, December 2009: 161-168.
  • 8Tantipathananandh C and Berger-Wolf T Y. Finding communities in dynamic social network[C]. 2011 llth IEEE International Conference on Data Mining, Vancouver, Canada, December 2011:1236- 1241.
  • 9Huang Liang-cheng, Yen Tso-jung, and Chou Seng-cho T. Community detection in dynamic social networks[C]. 2011 International Conference on Advances in Social Networks Analysis and Mining, Kaohsiung, July 2011: 110-117.
  • 10单波,姜守旭,张硕.IC:动态社会关系网络社区结构的增量识别算法[J].软件学报,2009,20(增刊):184-192.

二级参考文献29

共引文献143

同被引文献110

  • 1毛文吉,曾大军,柯冠岩,王飞跃.社会计算的研究现状及未来[J].中国计算机学会通讯,2011,12(7):8-12.
  • 2Lazer D, Pentland A, Adamic L, et al. Computational social science [ J ]. Science, 2009,323 ( 5915 ) :721-723.
  • 3Peng F, Qian X, Meng H, et al. Research on algorithm of extracting micro-blog's hot topics [ C ]//2011 International Conference on Electronics, Communicationa and Control(ICECC). Ningbo, China,2011:986-989.
  • 4Celli F, Di Lascio F M L, Magnini M,et al. Social network data and practices:The case of friendfeed [ C ]//Chai S K, Salerno J J, Mabry P L. Advances in Social Computing, Proceedings. Berlin : Springer-Verlag Berlin,2010:346-353.
  • 5Highfield T, Kirehhoff L, Nicolai T. Challenges of tracking topical discussion networks online [ J ]. Social Science Computer Review,2011,29( 3 ) :340-353.
  • 6Armentanon M G,Godoy D, Amandi A A. Followee recommendation based on text analysis of micro-blogging activity[ J ]. In- formation Systems,2013,38:1 116-1 127.
  • 7Guan Wanqiu ,Gao Haoyu ,Yang Mingmin,et al. Analyzing user behavior of the micro-blogging website Sina Weibo during hot social events[ J/OL]. Physica A ,October 15,2013. 2014,395:340-351. DOI :http ://dx. doi. org/10. 1016/j. physa. 2013.09.059.
  • 8Wei Jiuchang, Bua Bing, Liang Liang. Estimating the diffusion models of crisis information in micro blog[ J ]. Journal of Infor- mettles,2013,6(4) :600-610.
  • 9Toyoda M, Kitsuregawa M. A Web community chart for navigating related communities [ C ]//Proceedings of International Conference on World Wide Web. Hongkong,China,2001 :1083.
  • 10Flake G W, Lawrence S, Giles C L. Efficient identification of Web communities [ C ]//Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston , USA ,2000 :150-160.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部