期刊文献+

统计特性已知的复杂系统控制器设计方法

Controller design method for complex systems with known statistics feature
原文传递
导出
摘要 对于具有白噪声加性干扰的复杂系统的控制问题,建立了Takagi-Sugeno模糊控制模型,利用Kalman滤波对系统状态信息进行局部估计,用动态规划获得了控制增益,这样导出的控制器具有学习特点,使得闭环系统具有期望的性能指标.以倒立摆为仿真实例,仿真结果表明了所设计控制器的有效性. The control problem for a class of complex systems with the disturbance of white noise and additivity is considered.The Takagi-Sugeno fuzy control model is established,the local state information is estimated by Kalman filter,and the control gain is obtained by dynamic programming.Then the controller is designed,which has the active learning feature and the desired performance.Using an inverted pendulum as a simulation example,the results show the effectiveness of the designed controller.
出处 《控制与决策》 EI CSCD 北大核心 2013年第9期1335-1340,共6页 Control and Decision
基金 国家自然科学基金项目(61273127) 高等学校博士学科点专项科研基金项目(20116118110008)
关键词 线性二次型高斯控制 TAKAGI-SUGENO模型 KALMAN滤波 动态规划 linear quadratic Gaussian control Takagi-Sugeno model Kalman filter dynamic programming
  • 相关文献

参考文献14

  • 1Li Duan, Qian Fucai, Gao Jianjun. Performance-first control for discrete-time LQG problems[J]. IEEE Trans on Automatic Control, 2009, 54(9): 2225-2230.
  • 2Li Duan, Qian Fucai, Fu Peilin. Optimal nominal dual control for discrete-time LQG problem with unknown parameters[J]. Automatica, 2008, 44(1): 119-127.
  • 3Li Duan, Qian Fucai, Fu Peilin. Variance minimization approach for a class of dual control problems[J]. IEEE Trans on Automatic Control, 2002, 47(12): 2010-2020.
  • 4钱富才,朱少平,刘丁.噪声未知的LQG控制问题研究[J].控制理论与应用,2010,27(8):1017-1022. 被引量:5
  • 5钱富才,宋俐,陈小可.基于滚动优化的对偶控制策略[J].控制理论与应用,2005,22(6):855-860. 被引量:7
  • 6Piotr Kaczynski, Leslaw Socha. Iterative procedures in application of the LQG approach to control problem for polynomial stochastic systems[J]. IEEE Trans on Automatic Control, 2010, 55(8): 1875-1881.
  • 7Dong Jiuxiang, Yang Guanghong. Control synthesis of T- S fuzzy systems based on a new control scheme[J]. IEEE Trans on Fuzzy Systems, 2011, 19(2): 323-338.
  • 8Liu X, Zhang Q. Approaches to quadratic stability conditions and Hoo control designs for T-S fuzzy systems[J]. IEEE Trans on Fuzzy Systems, 2003, 11(6): 830-839.
  • 9Wang W J, Chen Y J, Sun C H. Relaxed stabilization criteria for discrete time T-S fuzzy control system based on a switching fuzzy model and piecewise Lyapunov function[J]. IEEE Trans on System, Man and Cybem B, 2007, 37(3): 551-559.
  • 10Kruszewski A, Wang R, Guerra T M. Nonquadratic stabilization condition for a class of uncertain nonlinear discrete time T-S fuzzy models: A new approach[J]. IEEE Trans on Automatic Control, 2008, 53(2): 606-611.

二级参考文献21

  • 1吴忠强,李杰,高美静.不确定离散时滞模糊系统的保性能控制[J].模糊系统与数学,2004,18(3):95-101. 被引量:8
  • 2DuanLi,FucaiQian,PeilinFu.Research on Dual Control[J].自动化学报,2005,31(1):32-42. 被引量:14
  • 3冯川,孙增圻,孙富春.机械手动态T-S神经模糊H∞控制器设计[J].清华大学学报(自然科学版),2005,45(1):73-76. 被引量:2
  • 4Takagi T, Sugeno M. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets and Systems, 1992, 45(2): 135--156.
  • 5Tong S C, Li H H. Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties [ J ]. Fuzzy Sets and Systems, 2002, 131(2) : 165--184.
  • 6Leung F H, Lam H K, Tam P K. Design of fuzzy controllers for uncertain nonlinear systems using stability and robustness analyses[J]. Systems & Control Letters, 1998, 35(4) : 237--243.
  • 7Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1985, 15(1): 116--132.
  • 8Wu H N, Cai K Y. H2 guaranteed cost fuzzy control for uncertain nonlinear systems via linear matrix inequalities [ J ]. Fuzzy Sets and System, 2004, 148(3) : 411-429.
  • 9Kogan M M. Solution to the inverse problem of minimax control and worst case disturbance for linear continuous-time systems [J]. IEEE Trans. on Autom. Control, 1998, 43(5) : 670---674.
  • 10Kogan M M. Solution to the inverse problem of minimax control and minimax robust control[ J]. Journal of Marketing Theory & Practice, 1998, 7(3) : 87---97.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部