期刊文献+

基于精英学习的量子行为粒子群算法 被引量:12

Quantum-behaved particle swarm optimization algorithm based on elitist learning
原文传递
导出
摘要 在分析量子行为粒子群算法中吸引子指导作用的基础上,引入两种精英学习策略,提出了基于精英学习的量子粒子群算法(QPSO-EL).采用动态逼近学习策略对精英个体进行局部更新,协助其跳出自身局部极值点,引导种群进行有效搜索;借鉴群体早熟判断机制对停滞状态下的精英个体空间进行变尺度混沌扰动,增大种群全局搜索空间,有效平衡了算法的局部和全局搜索能力.典型函数的仿真结果表明,该算法具有收敛速度快、求解精度高的特点. The local attractor point in the quantum-behaved particle swarm optimization algorithm plays an important role in determining the convergence process of population.Therefore,a quantum-behaved particle swarm optimization algorithm based on two elitist learning strategys(QPSO-EL) is presented.In this method,the dynamic-approximation search strategy is exerted on the elitist particles to avoid them running into local optima and provides a good guidance for the population.While the algorithm is found to be in a dead state according to the premature judgment mechanism,the mutative-scale chaotic perturbation is used to exhibit a wide range exploration and keep the balance of exploration and exploitation.The experiment results on classic functions demonstrate the global convergence ability and the search accuracy of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2013年第9期1341-1348,共8页 Control and Decision
基金 国家科技支撑计划项目(2009BAC56B03)
关键词 量子行为粒子群 精英学习 动态逼近搜索 变尺度混沌扰动 quantum-behaved particle swarm optimization elitist learning dynamic-approximation research mutative scale chaotic perturbation
  • 相关文献

参考文献20

二级参考文献111

共引文献315

同被引文献98

  • 1武晓今,朱仲英.遗传算法多样性测度问题研究[J].信息与控制,2005,34(4):416-422. 被引量:17
  • 2冯卉,刘付显,毛红保.基于遗传算法的防空部署优化方法[J].空军工程大学学报(自然科学版),2006,7(4):32-35. 被引量:7
  • 3康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,2007,43(23):40-42. 被引量:19
  • 4李丽,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2010.
  • 5莫愿斌,陈德钊,胡上序.求解非线性方程组的混沌粒子群算法及应用[J].计算力学学报,2007,24(4):505-508. 被引量:18
  • 6SimonHaykin 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 7Yuan P, Ji C L, Zhang Y, et al. Optimal multicast routing in wireless ad hoe sensor networks[C]//Proceedings of 2004 IEEE International Conference on Networking, Sensing and Control. 2004 : 367-371.
  • 8Montemanni R, Oambardella L M, INs A K. The minimum power broadcast problem in wireless networks: a simulated annealing approach[C]//Proeeedings of the 2005 IEEE Wireless Commu- nications and Networking Conference. New Orleans, I.A, USA, 2005 : 2057-2062.
  • 9Zhong W L, Huang J, Zhang J. A novel particle swarm optimiza- tion for the Steiner tree problem in graphs[C]//Proceedings of the 2008 IEEE Congress on Evolutionary Computation. Hong Kong, China, 2008 : 2460-2467.
  • 10Hernandez H,Blum C. Energy-efficient multicasting in wireless ad-hoc networks:an ant colony optimization approach[C]//Pro- ceedings of the 2008 IEEE International Symposium on Wireless Communication Systems. Reykjavik, Iceland, 2008 : 667-671.

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部