期刊文献+

基于蜂群算法的多小波图像去噪研究 被引量:14

Multi-wavelet image denoising based on artificial bee colony algorithm
原文传递
导出
摘要 针对在多小波图像去噪中阈值难以选取问题,提出基于群体智能算法—人工蜂群算法(artificial bee colonyalgorithm,ABC)优化多小波阈值。详细介绍了群体智能算法的发展历程和分类,阐述了ABC算法的基本原理、工作流程,及其优化多小波阈值在图像去噪中的具体步骤,比较了遗传算法(genetic algorithm,GA)、粒子群算法(par-ticle swarm optimization,PSO)、蚁群算法(antcolonyoptimization,ACO)以及ABC算法4种算法各自的优缺点。将提出的方法与GA算法和PSO算法优化多小波阈值进行了对比,通过仿真,证明提出的算法可以有效地去除高斯白噪声,提高图像的峰值信噪比(peak signal to noise ratio,PSNR),具有很好的去噪效果。 Aiming at the difficult problem of selecting the multi-wavelet image denoising threshold,we proposed the optimize multi-wavelet threshold algorithm based on the swarm intelligence—artificial bee colony algorithm(ABC).The method is widely used in image processing.This paper describs the course of development of swarm intelligence algorithms and classification,after elaborating on the basic principle of artificial bee colony algorithm workflow,and the details of the artificial bee colony algorithm to optimize the multi-wavelet threshold in image denoising concrete steps.We also elaborated the respective advantages and disadvantages of the four algorithms of the genetic algorithm,particle swarm optimization,ant colony algorithm and artificial bee colony algorithm.Compared with the genetic algorithm and particle swarm algorithm optimized the multi-wavelet threshold,through experimental simulation,the proposed algorithm effectively removed Gaussian white noise,improved the image of the peak signal-to-noise ratio,and had a good denoising effect.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2013年第4期532-537,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 河南省教育厅科学技术研究重点项目(12B520071)~~
关键词 图像去噪 多小波 人工蜂群算法(ABC) 遗传算法(GA) 粒子群算法(PSO) image denoising multi-wavelet artificial bee colony algorithm(ABC) genetic algorithm(GA) particle swarm optimization(PSO)
  • 相关文献

参考文献13

  • 1杨静,吴成茂,屈汉章.基于多参数小波阈值函数的图像去噪[J].计算机工程与应用,2012,48(13):176-180. 被引量:11
  • 2章琳,方志军,汪胜前,杨凡,刘国栋.基于遗传算法的多小波自适应去噪方法研究[J].红外与毫米波学报,2009,28(1):77-80. 被引量:11
  • 3胡晓红,陈大卿.基于变分偏微分方程的双参数图像去噪模型[J].重庆邮电大学学报(自然科学版),2012,24(3):391-394. 被引量:6
  • 4Yu Liu,Xiaoxi Ling,Yu Liang,Guanghao Liu.Improved artificial bee colony algorithm with mutual learning[J].Journal of Systems Engineering and Electronics,2012,23(2):265-275. 被引量:7
  • 5江瑞,罗予频,胡东成,司徒国业.Coordinating Exploration and Exploitation To Construct Genetic Algorithms[J].Tsinghua Science and Technology,2002,7(6):608-618. 被引量:3
  • 6HU Xiaomin, ZHANG Jun, CHUNG H, et al. SamACO: Variable Sampling Ant Colony Optimization Algorithm for Continuous Optimization [ J ]. Systems, Man, and Cyber- netics,Part B : Cybernetics, IEEE Transactions on ,2010, 40 (6) : 1555-1566.
  • 7CHAU K. Application of a PSO-based neural network in analysis of outcomes of construction claims I J]. Autom Construct, 2007,16(3) :642-646.
  • 8COELHO L, ALO3TO P. Gaussian Artificial Bee Colony Algorithm Approach Applied to Loney Is Solenoid Bench- mark Problem [ J ]. Magnetics, IEEE Transactions on , 2011,47 (5) : 1326-1329.
  • 9CHANDRASE karan, SIMON S. Multi-objective unit com- mitment problem with reliability function using fuzzified binary real coded artificial bee colony algorithm[ J]. Gen- eration, Transmission & Distribution, IET, 2012,6 (10) : 1060-1073.
  • 10TASPNAR N, KARABOG? A D, YILDIRIM M, et al. Partial transmit sequences based on artificial bee colony algorithm for peak-to-average power ratio reduction in multicarrier code division multiple access systems [ J ]. Communications, IET , 2011, 5 ( 8 ) : 1155-1162.

二级参考文献60

  • 1费佩燕,郭宝龙.基于多小波的图像去噪技术研究[J].中国图象图形学报(A辑),2005,10(1):107-112. 被引量:17
  • 2费双波,赵瑞珍.SURE准则的图像小波阈值去噪[J].北京交通大学学报,2007,31(2):15-18. 被引量:8
  • 3Strela V, Walden A. Signal and image denoising via wavelet thresholding : orthogonal and biorthogonal, scalar and multi-pie wavelet transforms[R]. Imperial College, 1998.
  • 4Charnbolle A, Deore R A, Lee Nam-Yong , et al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage[ J]. IEEE Trans on Image Processing,1998,7(3) :319-335.
  • 5Donoho D L. De-denoising by soft-thresholding[ J]. IEEE trans on information theory, 1995,41 ( 3 ) :613-627.
  • 6Xu Yan-Sun. Wavelet transform domain filter: a spatially selective noise filtration technique [ J ]. IEEE Trans on Image Processing, 1994,3 ( 6 ) : 747-758.
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [ J ]. Biometrika, 1994, 81:425-455.
  • 8谭艳丽 张丕状.基于自适应阈值的小波图像去噪法研究.电脑知识与技术,2007,(12):1682-1683.
  • 9OZKAN M K, ERDEM A T, SEZAN M I, et al. Effi- cient multiframe Wiener restoration of blurred and noisy image sequences[ J]. IEEE Transactions on Image Pro- cessing, 1992, 1 (4) : 453-476.
  • 10RUDIN L, OSHER S, FATEMI E. Nonlhear total varia- tion based noise removal algorithms [ J ]. Physica D, 1992, 60(1-4) : 259 - 268.

共引文献33

同被引文献128

引证文献14

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部