期刊文献+

辐射换热对热防护材料热环境的影响 被引量:1

Effect of Radiation Heat Transfer on Thermal Environment of the Thermal Protection Materials
下载PDF
导出
摘要 利用超声速矩形湍流导管和等离子电弧加热器模拟内外流热环境,通过冷壁热流测量和热防护材料考核对比分析二者的差异。结果表明:由于辐射换热的影响,在选取的两个来流条件下,内流热环境下的冷壁热流比外流热环境下的分别高出41.6%和20.4%。随着冷壁热流的增加,辐射换热的影响力会逐渐减小。在材料考核试验中,相同配方工艺和涂层设计的C/C复合材料在内流热环境下的表面温度高出313℃,背面温度高出160℃,材料表面出现明显烧蚀;而在外流热环境下材料表面完好。因此在气动热考核试验中,需要充分考虑辐射换热的影响,根据材料所处的热环境选择不同的地面试验模拟方法。 Outer and inner flow thermal environment have been compared by measuring the cold-wall heat flux and testing the thermal protection material in the supersonic rectangle turbulent duct and arc heater. Due to the effect of radiation heat transfer, the cold-wall heat flux in the inner flow environment is respectively higher 41.6% and 20.4% than that in the outer flow environment under two kinds of representative flow conditions. When the cold-wall heat flux increases, the effect of radiation heat transfer will gradually decrease. In test experiment of thermal protection material, the surface of the composites in the inner flow is 313℃ higher than those in the outer flow with same formulation and coating design, and rear temperature is 160℃ higher. The composites surface in the inner flow has been ablated obviously, but the composites surface in the out flow is very well. So the radiation heat transfer must be adequately considered in the aerothermodynamic ground experiment, and the simulation method will be chosen depends on the thermal environment of thermal protection material.
出处 《导弹与航天运载技术》 北大核心 2013年第5期70-75,共6页 Missiles and Space Vehicles
关键词 辐射换热 热防护材料 湍流导管 电弧加热器 Radiation heat transfer Thermal protection material Turbulent duct Arc heater
  • 相关文献

参考文献19

  • 1Painter J H, Schaeffer J F. Performance characteristics of a Huels-type arc heater operating on hydrogen, helium, or air[R]. AEDC-TR-76-25, ADA022491, 1976.
  • 2Milos F S, Scott C D, Papa S V D. Arejet testing and thermal model development for multi!ayer felt reusable surface insulation[R]. AIAA 2012-2869, 2012.
  • 3Benedetto S D, Marini M, Rufolo G C, Radboume R G. Aerothermodynamic analysis of the expert winglet: from the in-flight environment characterization to the rebuilding of the scirocco plasma wind tunnel test[R]. AIAA 2009-7242, 2009.
  • 4Gardi R, Vecchio A D, Marino G, Russo G. CIRA activities on UHTC's: on-ground and in flight experimentations[R]. AIAA 2011-2303, 2011.
  • 5姜贵庆.疏导式热防护若干问题的探讨[C].北京:飞行器热环境与热防护研讨会,2006.05.
  • 6吴国庭.统一热管理的疏导式防热系统概念研究[J].航天器工程,2009,18(4):13-19. 被引量:5
  • 7陈连忠,欧东斌.高温热管在热防护中应用初探[J].实验流体力学,2010,24(1):51-54. 被引量:20
  • 8Slimko E M, Edquist K T, Sepka S A. Developmem of the mars science laboratory heatshield thermal protection system[R]. AIAA 2009-4229, 2009.
  • 9Laub B, Chen Y K, Dec J A. Development of a high fidelity thermal/ablation response model for SLA-561V[R]. AIAA 2009-4232, 2009.
  • 10Sepka S A, Komienko R S, Radbourne C A. Testing of SLA-561V in NASA-Ames' turbulent flow duct with augmented radiative heating[R]. AIAA 2011-3619, 2011.

二级参考文献16

  • 1曹运红,盛德林,邢娅.超燃冲压发动机用复合材料技术的研究状况[J].飞航导弹,2005(6):54-58. 被引量:5
  • 2Nevin K H, Carrol F C. Feasibility of standard evalution procedures for ablation materials. NASACR--379, 1996:49 -68.
  • 3Winovich W. , On the equilibrium sonic-flow method for evaluating electric-arc air-heater performance, NASA TN D - 2132, 1964.
  • 4Adams M C, Powers W E, Georgiev S. An experimental and theoretical study of quartz ablation at the stagnation point. J. A.S. Journal, 1960:535 -543.
  • 5Robert Siegel, John R. Howell. Thermal radiation heat transfer. Taylor & Francis, New York London, fourth edition, 2002:213 -217.
  • 6SILVERSTEIN C C. A feasibility study of heat pipe-cooled leading edges for hypersonic cruise aircraft[R]. NASA CR 1857, 1971.
  • 7NIBLOCK G A, REEDER J C. Four space shuttle wing leading edge concepts[J]. Journal of Spacecraft and Rockets, 1974,11(5):314-320.
  • 8ANON. Study of structural active cooling and heat sink systems for space shuttle[R]. NASA CR 123912, 1972.
  • 9CAMARDA C J. Analysis and radiant heating tests of a heat-pipe-cooled leading edge [R]. NASA TN D-8468, 1977.
  • 10GLASS D E. Heat-pipe-cooled leading edges for hypersonic vehicles[R]. NASA Langley Research Center July 12-13, 2006.

共引文献32

同被引文献26

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部