期刊文献+

基于图的航空图像与GIS模型匹配算法 被引量:1

Matching Algorithm of Aerial Image and GIS Model Based on Graph
下载PDF
导出
摘要 地理信息系统(GIS)采用语义描述,图像中缺少颜色及灰度信息,只能基于其结构特征进行匹配。受目前图像处理技术限制,从图像中提取的特征信息量少、精度受限、且往往含有噪声。针对上述问题,提出一种基于图的航空图像与GIS模型匹配算法。基于UWG-SA方法分别对GIS与实时图像特征自动构建图,根据设定的相容函数,采用分级指派方法计算图的全局相容度,并给出主方向方法去除误匹配,求解变换参数。实验结果表明,该算法匹配概率为98.5%,平均匹配误差为8.54 m,平均耗时为0.075 s,可满足飞行器导航需求。 Geographic Information System(GIS) is described by semantics. There is no color or gray information in GIS. The matching between aerial images and GIS has to rely on structural features. Restricted by current image processing techniques, the features extracted from images are low informative, have low precision, and usually contain noises. Aiming at these problems, a graph-based matching framework is proposed to align the GIS model and the aerial image. The Undirected Weighted Graphs(UWG) are constructed automatically using the angle between segment lines called UWG-SA for GIS and the extracted image features, respectively. A Graduated Assignment(GA) method is performed to find the global correspondences. It uses the main-direction method to eliminate the incorrect match sets and get the transformation parameters. Experimental results show that the matching probability is about 98.5%, the average matching error is about 8.54 m, and the average cost time is 0.075 s. The algorithm can basically meet the demand for aircraft navigation.
出处 《计算机工程》 CAS CSCD 2013年第10期187-191,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61005028 61175032)
关键词 航空图像 GIS模型 无向加权图 线性不变 非精确图匹配 分级指派 主方向法 aerial image Geographic Information System(GIS) model undirected weighted graph linear invariant inexact graph matching graduated assignment main-direction method
  • 相关文献

参考文献9

  • 1Salve S G. Shape Matching and Object Recogni-tion Using Shape Contexts[C]//Proc. of ICCSIT'10. Chengdu, China: Is. n.], 2010.
  • 2Shu Xin, Wu Xiaojun. A Novel Contour Descriptor for 2D Shape Matching and Its Application to Image Retrieval[J]. Image Vision Computer, 2011, 29(4): 286-294.
  • 3Deng Kexin, Tian Jie, Zheng J, et al. Retinal Fundus Image Registration via Vascular Structure Graph Matching[J]. Journal of Biomedical Imaging, 2010, 14(1): 1-14.
  • 4Umeyama S. An Eigendecomposition Approach to Weighted Graph Matching Problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 695-703.
  • 5Gold S, Rangarajan A. A Graduated Assignment Algorithm for Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.
  • 6Sinkhorn R. A Relationship Between Arbitrary Positive Matri- ces and Doubly Stochastic Matrices[J]. Ann. Math. Statist., 1964, 35(2): 876-879.
  • 7Zhu Chengfei, Li Shuxiao, Chang Hongxing, et al. Matching Road Networks Extracted from Aerial Images to GIS Data[C]//Proc. ofAPCIP'09. Shenzhen, China: [s. n.], 2009.
  • 8Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
  • 9Chetverikov D, Svirko D, Stepanov D, et al. The Trimmed Iterative Closest Point Algorithm[C]//Proc. of the 16th International Conference on Pattern Recognition. Quebec, Canada: Is. n.], 2002.

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部