期刊文献+

苯丙胺模型大鼠海马差异表达微小核糖核酸的研究 被引量:2

Microaaray-based analysis of micro-ribonucleic acid expression in an animal model of amphetamine
原文传递
导出
摘要 目的 初步探讨苯丙胺(amphetamine,AMPH)模型大鼠海马的微小核糖核酸(microRNA)的表达情况.方法 应用microRNA微阵列芯片技术筛选AMPH模型大鼠(AMPH模型组,10只)和对照大鼠(对照组,10只)海马差异表达microRNA;选取有明显表达变化的microRNA,采用实时定量聚合酶链反应、免疫印迹法验证相关靶基因及蛋白在AMPH模型大鼠海马的表达变化.结果 (1)旷场实验:AMPH模型组水平运动格子数(28.21 ±2.22)个,垂直运动次数(82.33 ±4.61)次,均高于对照组[(17.10±1.94)个、(52.32±3.76)次],差异有统计学意义(t=11.92,P<0.01;t=15.95,P<0.01).(2) AMPH模型组共有136个microRNA表达,其中,上调>2倍的microRNA有14个,下调>2倍的microRNA有6个;上调>5倍的microRNA有3个,分别为microRNA-134、microRNA-143、microRNA-96,下调>5倍的microRNA有2个,分别为microRNA-132、microRNA-210;实时定量聚合酶链反应验证了以上结果;通过microRNA特异性的靶标检测系统(miRanda)推测microRNA-134、microRNA-143、microRNA-96、microRNA-132、microRNA-210靶基因分别为谷氨酸受体1(GRM-1)、脑源性神经营养因子(BDNF)以及生长抑素(SSTR-1).(3)免疫印迹法检测预测靶蛋白表达结果:AMPH模型组GRM-1为0.18±0.02、BDNF为0.21 ±0.02、SSTR-1为0.42 ±0.02,较对照组(分别为0.28±0.03、0.31±0.03、0.59±0.03)含量均下调,差异有统计学意义(t=8.77,P<0.05;t=8.77,P<0.05;t=14.91,P<0.05).结论 AMPH模型中海马microRNA呈差异表达. Objective This study compared the difference of micro-ribonucleic acid (microRNA) expression in hippocampus of rat brain between an animal model of amphetamine(AMPH) and the normal by using the microRNA microaaray chip technology.Methods Twenty male SD rats were divided into control group(10) and AMPH group(10).The differential expression of microRNA was screened by using the microRNA microaaray chip technology.The microRNAs and target proteins expression in the hippocampus in AMPH model were verified by real time PCR and western blot.Results (1) Numbers of crossings (28.21 ±2.22)and rearings(82.33 ±4.61)were significantly increased in AMPH groups compared with the control groups (crossings 17.10 ± 1.94 and rearings 52.32 ± 3.76) (t =11.92,P 〈 0.01 ; t =15.95,P 〈0.01).(2) 136 microRNA were found in the hippocampus in AMPH group.Among those 14 raised up two times higher microRNAs and 6 lower two times microRNAs were found in the hippocampus in AMPH group.Three five times higher microRNAs were microRNA-134,microRNA-143 and microRNA-96,2 five times lower microRNAs were microRNA-132 and icroRNA-210.It was verified by real time PCR,the predicted target genes by miRanda algorithm of five times higher microRNAs were GRM-1,BDNF and SSTR-1.(3) The target genes were detected using Western blot,the relative contains of GRM-1 (0.18 ± 0.02),BDNF (0.21 ± 0.02) and SSTR-1 (0.42 ± 0.02) in AMPH group were significantly lower than control group (0.28 ±-0.03,0.31 ±0.03,0.59 ±0.03)(t =8.77,P〈0.05; t =8.77,P〈0.05; t =14.91,P〈0.05).Conclusion This findings indicate that there be microRNAs expression difference in AMPH model hippocampus.
出处 《中华精神科杂志》 CAS CSCD 北大核心 2013年第5期301-305,共5页 Chinese Journal of Psychiatry
基金 广东省自然科学基金(S2011010001320) 广东省医学科研基金(B2010286) 深圳市科技计划项目(201102111) 深圳市心理健康重点实验室项目(201201)
关键词 苯丙胺 微阵列分析 双相情感障碍 Amphetamine Microarray analysis Bipolar disorder
  • 相关文献

参考文献15

  • 1Schratt G, MicroRNAs at the synapse. Nat Rev Neurosci,2009, l 0 : 842 -849.
  • 2Einat H, Modelling facets of mania-new directions related to the notion of endophenotypes. J Psyehopharmacol,2006 ,20 :714-722.
  • 3de Lima MN, Presti-Torres J, Vedana G, et al. Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated D-amphetamine exposure. Behav Brain Res ,2011, 224 : 100-106.
  • 4Walz JC, Frey BN, Andreazza AC, et al. Effects of lithium and valproate on serum and hippocampal neurotrophin-3 levels in an animal model of mania. J Psychiatr Res,2008,42:416-421.
  • 5Frey BN, Andreazza AC, Ceres6r KM, et al. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci,2006,79:281-286.
  • 6Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature,2006, 439:283-289.
  • 7Cryml JF, Kelly PH, Neijt HC, et al. Antidepressant and anxiolytic-like effects in mice lacking the group m metabotropic glutamate receptor mGluR7. Eur J Neurosci ,2003,17:2409-2417.
  • 8Millan MJ. MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr Opin Pharmaco1,2011,11 : 11-22.
  • 9Smalheiser NR, Lugli G, Rizavi HS, et al. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmaco1,2011,14 : 1315-1325.
  • 10Magill ST, Cambronne XA, Luikart BW, et al. microRNA-132regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A,2010, 107: 20382-20387.

二级参考文献25

  • 1First MB,Gibbon M,Spitzer RL,等.DSM-Ⅳ-TR轴Ⅰ障碍定式临床检查使用指南(研究版).李涛,周茹英,胡峻梅,等,译.成都:四川大学华西医院心理卫生研究所,2004:1-219.
  • 2Phelps J. Bipolar disorder-a focus on depression. N Engl J Med, 2011,364 : 1580-1581.
  • 3Merikangas KR, Akiskal HS, Angst J, et al. Lifetime and 12- month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry, 2007, 64 : 543 -552.
  • 4Kapczinski F, Frey BN, Kauer-Sant'Anna M,et al. Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder. Expert Rev Neurother,2008,8:1101-1113.
  • 5Becker S, Wojtowicz JM. A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci,2007,11:70-76.
  • 6Numakawa T, Suzuki S, Kumamaru E,et ah BDNF function and intracellular signaling in neurons. Histol Histopathol, 2010,25: 237 -258.
  • 7Hammonds MD, Shim SS. Effects of 4-week treatment with lithium and olanzapine on levels of brain-derived neurotrophic factor, B- cell CLL/lymphoma 2 and phosphorylated cyclic adenosine monophosphate response element-binding protein in the sub-regions of the hippocampus. Basic Clin Phannacol Toxicol, 2009, 105 : 113-119.
  • 8Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem Res,2009, 34:536-541.
  • 9Li N, He X, Zhang Y, et al. Brain-derived neurotrophic factor signalling mediates antidepressant effects of lamotrigine. Int J Neuropsyehopharmacol,2011,14 : 1091-1098.
  • 10Barbosa IG, Huguet RB, Mendonca VA,et al. Increased plasma levels of brain-derived neurotrophic factor in patients with long- term bipolar disorder. Neurosci Lett,2010, 475: 95-98.

共引文献8

同被引文献33

  • 1RobisonAJ,NestlerEJ.Transcriptionalandepigeneticmecha-nismsofaddiction[J].NatRevNeurosci,2011,12(11):623-37.
  • 2BrensilverM,HeinzerlingKG,ShoptawS.Pharmacotherapyofamphetamine-typestimulantdependence:Anupdate[J].DrugAl-coholRev,2013,32(5):449-60.
  • 3FioreR,SchrattG.MicroRNAsinsynapsedevelopment:tinymol-eculestoremember[J].ExpertOpinBiolTher,2007,7(12):1823-31.
  • 4ImHI,KennyPJ.MicroRNAsinneuronalfunctionanddysfunc-tion[J].TrendsNeurosci,2012,35(5):325-34.
  • 5PietrzykowskiAZ,FriesenRM,MartinGE,etal.Posttranscrip-tionalregulationofBKchannelsplicevariantstabilitybymiR-9un-derliesneuroadaptationtoalcohol[J].Neuron,2008,59(2):274-87.
  • 6ChandrasekarV,DreyerJL.MicroRNAsmiR-124,let-7dandmiR-181aregulatecocaine-inducedplasticity[J].MolCellNeuros-ci,2009,42(4):350-62.
  • 7HuangW,LiMD.NicotinemodulatesexpressionofmiR140,which targetsthe3′untranslated region ofdynamin 1 gene(Dnm1)[J].IntJNeuropsychoph,2009,12(4):537-46.
  • 8WuQ,ZhangL,LawPY,etal.Long-termmorphinetreatmentdecreasestheassociationofμ-opioidreceptor(MOR1) mRNAwithpolysomesthroughmiRNA-23b[J].MolPharmacol,2009,75(4):744-50.
  • 9LippiG,SteinertJR,MarczyloEL,etal.TargetingoftheArpc3actinnucleationfactorbymiR-29a/bregulatesdendriticspinemor-phology[J].JCellBiol,2011,194(6):889-904.
  • 10SabaR,StrchelPH,Aksoy-AkselA,etal.Dopamine-regulatedmicroRNAmiR-181acontrolsGluA2surfaceexpressioninhipp-ocampalneurons[J].MolCellBiol,2012,32(3):619-32.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部