期刊文献+

随机参数旋转柔性梁运动功能可靠性分析 被引量:2

Motion function reliability analysis of a rotating flexible beam with random parameters
下载PDF
导出
摘要 将假设模态法和随机响应面法相结合,对含有随机参数的旋转柔性梁进行运动功能可靠性分析.在柔性梁的纵向变形位移中计及耦合变形量的条件下,采用拉格朗日方程与假设模态法建立了该系统的刚柔耦合动力学模型,考虑系统物理参数和几何参数的随机性,基于随机响应面法对其进行可靠性分析.研究结果表明,与传统的蒙特卡罗法相比,三阶随机响应面法具有良好的计算精度,且效率更高.在取相同变异系数的条件下,质量密度的随机性对系统可靠性影响较大. The assumed mode method and stochastic response surface method are combined to analyze the motion function reliability of a rotating flexible beam with random parameters.Firstly,based on Lagrange's equations and the assumed mode method,the rigid-flexible coupling dynamic model which takes the coupling term of the deformation in the expression of longitudinal deformation is studied.Then considering the physical and geometrical parameters under randomness,the probability analysis is made by the stochastic response surface method.The rationality and efficiency of the modeling and the method presented are verified by an example.The results demonstrate that the third order stochastic response surface method leads to good precision with acceptable time consumption compared with the Monte Carlo (MC) method,and that the randomness of density has a greater effect on the reliability of the system.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第5期141-147,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(51175398)
关键词 旋转柔性梁 拉格朗日方程 假设模态法 随机响应面法 可靠性分析 rotating flexible beam Lagrange's equations assumed mode method stochastic response surface method reliability analysis
  • 相关文献

参考文献11

  • 1Chung J, Yoo H H. Dynamic Analysis of a Rotating Cantilever Beam by Using the Finite Element Method[J]. Journal of Sound and Vibration, 2002, 249(1): 147-164.
  • 2Al-Qaisia A A, Al-Bedoor B O. Evaluation of Different Methods for the Consideration of the Effect of Rotation on the Stiffening of Rotating Beam[J]. Journal of Sound and Vibration, 2005, 280(3-5): 531-553.
  • 3Deng Fengyan, He Xingsuo, Li Liang, et al. Dynamics Modeling for a Rigid-flexible Coupling System with Nonlinear Deformation Field[J]. Multibody System Dynamics, 2007, 18(4): 559-578.
  • 4杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证 [J].力学学报,2003,35(2):253-256. 被引量:39
  • 5Sandu C, Sandu A, Ahmadian M. Modeling Multibody Systems with Uncertainties. Part II: Numerical Applications[J]. Multibody System Dynamics, 2006, 15(3): 241-262.
  • 6皮霆,张云清,吴景铼.基于多项式混沌方法的柔性多体系统不确定性分析[J].中国机械工程,2011,22(19):2341-2343. 被引量:10
  • 7蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56. 被引量:55
  • 8Cameron R, Marin W. The Orthogonal Development of Nonlinear Functional in Series of Fourier-Hermite Functional[J]. Annals of Mathematics, 1947, 48: 385.
  • 9Isulapalli S S, Roy A, Georgopoulos P G. Stochastic Response Surface Methods for Uncertainty Propagation: Application to Environmental and Biological System[J]. Risk Analysis, 1998, 18(3): 351-363.
  • 10陈建军,马洪波,马娟,张建国,王敏娟.基于随机因子的结构分析方法[J].工程力学,2012,29(4):15-23. 被引量:15

二级参考文献52

共引文献110

同被引文献18

  • 1Liu J Y, Hong J Z. Dynamics of Three-dimensional Beams Undergoing Large Overall Motion [J]. European Journal of Mechanics A/Solids, 2004, 23(6): 1051-1068.
  • 2Sandu A, Sandu C, Ahmadian M, et al. Modeling Multibody Systems with Uncertainties. Part Ⅰ: Theoretical and Computational Aspects [J]. Multibody System Dynamics, 2006, 15: 369-391.
  • 3Isukapalli S S, Roy A, Georgopoulos P. Stochastic Response Surface Methods (SRSM) for Uncertainty Propagation: Application to Environmental and Biological Systems [J]. Risk Analysis, 1998, 18(3): 351-363.
  • 4Tatang M A, Pan W, Prinn R G, et al. An Efficient Method for Parametric Uncertainty Analysis of Numerical Geophysical Models [J]. Journal of Geophysical Research, 1997, 102(D18): 21925-21932.
  • 5Stroud A H. Approximate Calculation of Multiple Integrals [M]. New York: Prentice-Hall, Englewood Cliffs, 1971.
  • 6Wei D L, Cui Z S, Chen J. Robust Optimization Based on a Polynomial Expansion of Chaos Constructed with Integration Point Rules [J]. Mechanical Engineering Science, 2009, 223(5): 1263-1272.
  • 7韦东来,崔振山,陈军.混沌多项式新求解及其在板料成形性容差预测中的应用[J].机械工程学报,2009,45(8):261-265. 被引量:5
  • 8和兴锁,邓峰岩,王睿.具有大范围运动和非线性变形的空间柔性梁的精确动力学建模[J].物理学报,2010,59(3):1428-1436. 被引量:17
  • 9吴胜宝,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析[J].振动工程学报,2011,24(1):1-7. 被引量:46
  • 10戎保,芮筱亭,王国平,杨富锋.多体系统动力学研究进展[J].振动与冲击,2011,30(7):178-187. 被引量:45

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部