期刊文献+

纳米细菌纤维素的不同脱水过程对结构性能的影响及再吸水动力学 被引量:4

Effect of Different Dehydration Methods on Structure and Property of Nano Bacterial Cellulose and Dynamics Analysis of Their Water Reabsorption
下载PDF
导出
摘要 纳米细菌纤维素在脱水过程中其微观结构和浸润性、吸水性等会发生很大变化。文中采用自然干燥、微波干燥、冷冻干燥、双滚干燥、离心干燥5种不同的脱水方法对细菌纤维素(BC)进行脱水处理,考察和比较了脱水样品的再吸水性能、微观结构的变化以及脱水过程对样品表面浸润性的影响,并从动力学角度分析了不同样品的吸水过程。结果表明,微观三维网络结构保持较好的样品表现出良好的亲水性。冷冻干燥方式得到的样品浸润性最好,再吸水性能达到其干质量的108倍,其次是离心干燥,其它3种干燥样品的吸水性能均有不同程度的下降(约为10~25倍)。动力学分析表明,细菌纤维素再吸水溶胀过程遵循Fickian扩散定律,BC的网络结构保持越完整,材料的扩散系数越高,对应的再吸水性能也越好。 Microscopic structure and infiltrating water absorbability of nano bacterial cellulose (BC) in the dehydration process will change greatly. BC membranes were dried by five different dehydration methods: natural drying, microwave drying, freeze drying, double roll drying, and centrifugal drying. The water reabsorbability and microstructure changes as well as surface infiltrating of different dehydrated samples were investigated. Dynamics of their water absorbability was also discussed. The results show that specimens which maintain the 3D nano-network well have good hydrophilism. Frozen drying samples have the best water infiltration, of which water absorbability reaches 108 times of the original sample mass, while centrifugal drying samples has a inferior water absorbability. Water absorbability of other samples is subject to different degree of damage (10--25 times). According to dynamics analysis, it is found that water adsorption and swelling process follow Fickian diffusion law, BC with better 3D network structure has the larger diffusion coefficient, leading to better water absorbability.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2013年第10期50-54,共5页 Polymer Materials Science & Engineering
基金 北京市科技计划(z111103066611005) 国家自然科学基金资助项目(51073024,51273021)
关键词 细菌纤维素 干燥 吸水性能 微观结构 吸水动力学 bacterial cellulose dehydration water absorbability microstructure water-absorbing dynamics
  • 相关文献

参考文献9

  • 1Barud H S, Barrios C, Regiani T, et al. Self-supported silver nanoparticles containing bacterial cellulose membranes[ J ]. Materials Science and Engineering: C , 2008, 28(4): 515-518.
  • 2Czaja W, Krystynowicz A, Bielecki S, et al. Microbial ceUulose-the natural power to heal wounds [J]. Biomaterials, 2006, 27(2) : 145- 151.
  • 3谭勇,刘四新,李从发.细菌纤维素在医学方面的应用[J].现代生物医学进展,2008,8(12):2344-2346. 被引量:5
  • 4Wan Y Z, Luo H L, He F, et al. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites[J ]. Composites Science and Technology, 2009, 69(7-8) : 1212-1217.
  • 5Gao C, Wan Y Z, He F, et al. Mechanical, moisture absorption, and photodegradation behaviors of bacterial cellulose nanofiber- reinforced unsaturated polyester composites [ J ]. Advances in Polymer Technology, 2011, 30(4) :249-256.
  • 6Phisalaphong M, jatupaiboon N. Biosynthesis and characterization of bacteria cellulose-chitosan film [J]. Carbohydrate Polymers, 2008, 74(3) : 482-488,.
  • 7Dubey K A, Bhardwaj Y K, Chaudhari C V, et al. Radiation effects on SBR-EPDM blends: A correlation with blend morphology [J ]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(12) : 1676-1689.
  • 8Mohan Y M, Murthy P S K, Raju K M. Synthesis, characterization and effect of reaction parameters on swelling properties of acrylamide- sodium methacrylate superabsorbent copolymers [ J ]. Reactive and Functional Polymers, 2005, 63 (1) : 11-26.
  • 9李小兵,刘莹.固体表面润湿性机理及模型[J].功能材料,2007,38(A10):3919-3924. 被引量:27

二级参考文献54

  • 1Klemm D, Heublein B, Fink HP, et al. Cellulose: Fascinating Biopolymer and Sustainable Raw Material [J]. Angewandte Chemie International Edition, 2005, 44(22): 3358-3393.
  • 2Krystynowicz A, Czaja W, Pomorski L, et al. The evaluation of usefulness of microbial cellulose as a wound dressing material [M]. 14th Forum for Applied Biotechn, Gent, Belgium, Meded. Fac. Landbouwwet Rijksuniv, Gent, Proceedings Part Ⅰ. 2000:213-220.
  • 3Yamanaka. S., Watanabe, K, Kitamura, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose [J]. Journal of Materials Science, 1989, 24:3141-3145.
  • 4Yamanaka S, Sugiyama J. Structural modification of bacterial cellulose [J]. Cellulose, 2000, 7(3): 213-225.
  • 5Yamamoto H, Horii H. CP/MAS 13C NMR Analysis of the Crystal Transformation induced for Vdonia Cellulose by Annealing at High Temperatures [J]. Mareomolecules, 1993, 26:1313-1317.
  • 6Kenji T, Masashi F, Mitsuo T, et al. Synthesis of Acetobacter xylinum bacterial cellulose composite and its mechanical strength and biodegradability [J]. Mokuzai Gakkaishi, 1995, 41 (8): 749-757.
  • 7Marit S, Stephanie H, Vasken K, et al. Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(3): 463-470.
  • 8Marit S, Stephanie H, Vasken K, et al. Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(3): 463-470.
  • 9Kralisch S. Darstellung und Analyse hydrologischer Topologien auf der Basis kunstlicher neuronaler Netze [M]. Dissertation, FriedrichSchiller-Universitat Jena, Institut fur Geographie, Jena, 2004.
  • 10Watanabe K, Tarbchi M, Morinaga Y, et al. Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture [M]. Cellulose, 1998, 5(3): 187-200.

共引文献30

同被引文献34

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部