期刊文献+

自适应差分进化算法求解多平台多武器-目标分配问题 被引量:24

Solving weapon-target assignment problems based on self-adaptive differential evolution algorithm
下载PDF
导出
摘要 针对水面舰艇编队防空反导作战中的武器-目标分配问题,建立了编队防空火力分配模型,将自适应差分进化算法应用到模型的求解与仿真中,并根据参数优化,改善了问题求解的收敛特性。针对模型求解的特殊要求,采用适当的编码方案,使种群个体编码满足约束条件,利用混沌序列初始化种群,加强种群的搜索多样性,变异、交叉参数的动态自适应策略和混沌序列扰动避免算法陷入局部最优等方法对算法进行优化改进,较方便快捷地解决了多平台多类型武器-目标分配问题。实例证明,该方法能够获得满意的结果,与其他智能算法相比,在优化性能上有较大改进。 Aiming at weapontarget assignment (WTA) problems in the warship formations~ air defense operation, a WTA model is established. A selfadaptive differential evolution (DE) algorithm for solving WTA problems is proposed. By optimizing the parameters of the algorithm, the convergent characteristic of solving such problems is improved. According to the special requirements of the model solving, a special coding data structure that could effectively express the warship formation antiaircra/t combat effectiveness is put forward. Chaotic sequences generated by cube map are used to initiate populations to enhance the diversity of search strat egy. The chaotic disturbance is presented to avoid local optimum. And the dynamic selfadaptive strategy of the mutation and crossover parameters are adopted to improve the performance of the DE algorithm. The simula tions of the chaotic self adaptive DE algorithm for solving WTA problems verify the correctness and effective ness. Compared with other evolutionary algorithms, the proposed algorithm has a better Derformance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第10期2115-2120,共6页 Systems Engineering and Electronics
基金 军内预研项目(51327020105)资助课题
关键词 防空作战 武器-目标分配 自适应差分进化 混沌映射 air defense operation weapon-target assignment (WTA) self-adaptive differential evolutionchaotic mapping
  • 相关文献

参考文献22

  • 1蔡怀平,陈英武.武器-目标分配(WTA)问题研究进展[J].火力与指挥控制,2006,31(12):11-15. 被引量:68
  • 2Lee Z J, Lee C Y, Su S F. An immunity based ant colony opti mization algorithm for solving weapon-target assignment prob lem[J]. Applied Soft Computing, 2002, 2(1) : 39 - 47.
  • 3Lee Z J, Su S F, Lee C Y. Efficiently solving general weapon target assignment problem by genetic algorithms with greedy eu- genics[J]. IEEE Trans. on Systems, Man, and Cybernetics Part B : Cybernetics, 2003, 33(1) : 113 - 121.
  • 4Zeng X P, Zhu Y L, Nan L, et al. Solving weapon-target assign ment problem using discrete particle swarm optimization[C]//Proc of the 6th World Congress on Intelligent Control and Automation 2006:3562-3565.
  • 5阮旻智,李庆民,刘天华.编队防空火力分配建模及其优化方法研究[J].兵工学报,2010,31(11):1525-1529. 被引量:50
  • 6Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11(4) : 341 - 359.
  • 7杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):506-513. 被引量:134
  • 8苏海军,杨煜普,王宇嘉.微分进化算法的研究综述[J].系统工程与电子技术,2008,30(9):1793-1797. 被引量:54
  • 9Pan Q K, Suganthan P N, Wang L, et al. A differential evolution algorithm with self adapting strategy and control parameters[J]. Computers and Operations Research, 2011, 38(1): 394- 408.
  • 10Brest J, Zamuda A, Boskovic B, et al. Dynamic optimization using self-adaptive differential evolution[C]//Proc, of the IEEE Con gress on Evolutionary Computation, 2009:415 -422.

二级参考文献134

共引文献346

同被引文献230

引证文献24

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部